sinα+cosα=√2sin(α+π/4)
=√2[sinα(√2/2)+cosα(√2/2)]
=√2[sinαcos(π/4)+cosαsin(π/4)]
=√2sin(α+π/4)
公式asinx+bcosx=√(a²+b²)sin(x+φ),tanφ=b/a
兩角和與差的三角函式 :
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
和差化積公式 :
sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]
sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]
cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]
cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]
積化和差公式 :
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]
cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]
sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]
二倍角公式 :
sin(2a) = 2sin(a)cos(a)
cos 2a = cos2 a - sin2 a = 2cos2 a - 1= 1 - 2sin2 a
sinα+cosα=√2sin(α+π/4)
=√2[sinα(√2/2)+cosα(√2/2)]
=√2[sinαcos(π/4)+cosαsin(π/4)]
=√2sin(α+π/4)
公式asinx+bcosx=√(a²+b²)sin(x+φ),tanφ=b/a
擴充套件資料:兩角和與差的三角函式 :
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
和差化積公式 :
sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]
sin(a) - sin(b) = 2sin[(a - b)/2]cos[(a + b)/2]
cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]
cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]
積化和差公式 :
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]
cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]
sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]
二倍角公式 :
sin(2a) = 2sin(a)cos(a)
cos 2a = cos2 a - sin2 a = 2cos2 a - 1= 1 - 2sin2 a