回覆列表
  • 1 # 宋公明5

    再談哥德巴赫猜想和實踐檢驗真理的問題

    宋公明

    這個話題,只能和不懂數學的朋友談,因為懂數學的人一張口就把你堵回去了:你就別白費勁了,二百年來無數天才都解不了,騎著腳踏車是上不了月亮的。

    問題是你怎麼能證明哥猜是月亮呢?如果能證明哥猜是月亮,那哥猜不就解決了嗎?

    咱們不抬這個扛,所謂哥德巴赫猜想,就是要證明偶數都可以寫成兩個素數之和,即素加素。但是偶數也可以寫成合加合和合加素,這就產生了一個問題,為什麼素加素需要證明,而合加合不需要證明呢?難道合加合和合加素是天經地義天然成立不需要證明的嗎?既然素加素的證明非常難,不是我等能問津的,那麼好吧,我們且不去證明素加素,我們來證明合加合總可以吧?

    最小的合數(指奇數中,下同)是9,那麼很顯然,最小的合加合是18,也就是說,在小於18的偶數中,只有素加素和合加素,而沒有合加合。所以合加合併非天然成立,而是在一定條件下才能成立。

    自然數是先有素數然後才有了合數,合數是素數因子和另一奇數和乘積。即:S(2N+1)。故先有素加素,然後才有合加合。合數需要素數做因子,有素數才有合數,合數的增多,擠佔了自然數的空間,素數就會減少。但是自然數每增加一位,奇數總量增加九倍,遠大於合數增加數。所以素數是無限的,合數也是無限的。

    隨著合數的增多,合加合當然也隨之增加, 隨著合數增多,就出現了合數連續,例如:

    115,117,119,121,123,125,

    是6個合數連續。

    因為在奇數數列(2N+1)中,每3個數中必有1個3的倍數,每5個數中必有1個5的倍數,每7個數中必有1個7的倍數,以此類推。所以,6個合數連續,必然至少會有3個合加合。所以合加合的必然性是可以證明的。

    對於一個偶數,合加合,合加素,素加素之間是相互關聯的,三者數量之和等於該偶數中奇數總數。例如對於偶數100,有50個奇數。我們這樣排列:

    表1:

    1, 3, 5, 7, 9

    11,13,15,17,19

    21,23,25,27,29

    31,33,35,37,39

    41,43,45,47,49

    51,53,55,57,59

    61,63,65,67,69

    71,73,75,77,79

    81,83,85,87,89

    91,93,95,97,99

    這樣排列可以很清楚看出,從兩位數起,中間一行尾數為5的數都是合數,其兩邊是尾數是1,3,7,9,的奇數。當中間的數為25+30n時,兩邊尾數是1,7的奇數一定是3的倍數。為35+30n時,兩邊尾數是3,9,的奇數也一定是3的倍數,為45+70n時,右邊尾數為9的數一定是7的倍數,以此類推,75+70n時,邊上尾數7的數一定是7的倍數,95+70n時,邊上尾數為1的數也是7的倍數。同樣,還可以找出11,13,17等其他素數因子倍數的位置。而為15+30n時,兩邊必定沒有3的倍數,因此孿生素數和四生素數只可能在這樣的數兩出現。(尾數為9,1的孿生素數只可能出現在30+30n的兩邊)

    由此可知,如果偶數尾數為0時,中間一列尾數為5兩位數以上的數都要組成合加合。而偶數的尾數是2,4,6,8時,中間一列尾數為5兩位數以上的數必然要和兩邊各列的合數陣列成合加合和合加素。

    以表1為例,中間一列尾數為5的數可組成4對合加合,和兩邊的數至少可組成3對合加合。

    所以,合加合不僅可以證明其存在,而且可以證明,隨著偶數加大,合加合的數量也隨之增加。

    對於偶數100,

    1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

    99 97 95 93 91 89 87 85 83 81 79 77 75 73 71 69 67 65

    37 39 41 43 45 47 49

    63 61 59 57 55 53 51

    其中包含26個合數(因為1不算素數,且歸入合數)和24個素數,其中合加合有:1 99,9 91,15 85,25 75,35 65,45 55,49 51.共7對14個數。

    對於偶數200,在100個奇數中,有 54個合數,46個素數,而合加合有12對24個數。

    說到現在,一直都是在證明合加合。但是對於一個偶數來說,其中的合數的總量就那麼多,除去合加合之後剩下的合數就只能組成合加素。

    例如對於偶數100,26個合數減去7對14個合數,剩下的合數為26-14=12個。這12個合數只能組成合加素,即合加素有12對。相應的素數就剩下24-12=12個,這12個素數可組成6對素加素。

    即,3+97, 11+89,17+83,29+71,41+59,47+53,

    對於200這個偶數,100個奇數中有55個合數,其中合加合有12對24個數,剩下31個合數組成31個合加素。相應的,45個素數減去31剩下14個,因此素加素有7對14個素數。

    請看,本來是證明合加合的,不想倒抄了素加素的後路。這合數和素數本來就是對立的統一的關係,合加合,合加素,素加素,也是相互關聯的矛盾統一體,有此必有彼,此長則彼消。素加素不是有沒有的問題,而是數量有多少的問題。

    對於任意偶數,其中合數所佔的比例是可以計算的,其中3的倍數9+6n,佔奇數總數的1/3,5的倍數25+10n,佔1/5,但要減掉與3的倍數重複的部分,即為2/15,同樣7的倍數為8/105。等等。對於1000這個偶數來說,其中的奇合數在9和999之間,其中最小的因數是3,最大的因數是333,因此構成合數的因數只能在這一區間之內。

    表2:

    素數因數 倍數 合數數量 3 9,15,21,... 999 165

    5 25,35,55,..... 995 66

    7 49,77,91,..... 973 37

    11 121,143,187,.. 979 20

    13 169,221,247,.. 949 16

    17 289,323,391,.. 901 11

    19 361,437,551,.. 931 9

    23 529 667 713 851 943 989 6

    29 841 899 2

    31 961 1

    合計 333

    由表2可見,3和倍數佔奇數總數的1/3,以後5,7,11等的倍數的數量迅速遞減,而31構成的合數只有1個961,即佔奇數總數的1/500。隨著偶數增大,新增的合數比例也隨之下降。所以偶數中合數和素數所佔的比例是趨向一個極限的。

    表3:

    偶數  合數個數  比例   素數個數   比例

    100 26 52/100   24 48/100

    200 55 55/100 45 45/100

    1000 333 66.6/100 167 33.4/100

    10000 3773 75.44/100 1228 24.56/100

    50000 19868 79.4/100 5132 20.6/100

    由表3可見,隨著偶數增大,合數的比例隨之增大,但增速在減慢,並超向極限。素數的比例雖然在減小,也超向極限。但由於基數不斷增大,所以素數的數量卻是不斷增加的。

    由表1可知,合加合是必然存在的而且偶數越大,則合加合的數量就越大。

    表4:

    偶數 合加合 合加素 素加素 奇數

    100 7對14個 12對24個 6對12個 50個

    200 12對24個 31對62個 7對14個 100個

    1000 28對56個 111對222個 12對24個 500個

    因為偶數中奇數的總量是合數和素數之和,合加合的數量是合數的數量和分佈所決定,合加合的數量會隨著偶數增大而增多。因此除去合加合的數量,剩下的合數必然少於素數的數量。雖然素的比例在在減少,但是隻能趨向極限而不會消失,除去合加素,剩下素數哪怕只有1/100,由於基數很大,那也是龐大的數量。100億的1/100也有1億之多。所以素加素不是有沒有,而是有多少的問題。而且是偶數越大,素加素就越多,既然已知較小的偶數都是如此,那麼未知更大的偶數更是如此。

    哥猜是實踐中發現的現象,是不是真理,素加素是不是普遍存在,為什麼不能用實踐去檢驗呢?不是說實踐是檢驗真理的唯一標準嗎?很顯然,再多的實踐也只是反映表面現象,若不能揭示其內在規律性,還是不能肯定哥猜一定成立,總是對下一個偶數是否成立沒把握。現在連腳踏車都不用騎,只是從合數入手,很容易就能揭示合數產生的規律,揭示了合加合,合加素,和素加素之間的內在關係,這樣就對素加素的成立有了充分合理的解釋。

    2017,10,12

  • 2 # 旁觀者周生

    哥德巴赫猜想不是什麼大的猜想,對於現在的數學體系沒有多少影響,能不能最終被證明出來,也是無關大局,甚至可以說它對或者不對,都沒關係,對現代數學絲毫影響也沒有。想另起爐灶來證明它,純屬不懂哥德巴赫猜想,更不懂數學。

  • 3 # 聽晨悅

    哥德巴赫猜想被證明,必然有一整套完整的數學體系支援,由此,人們運用了各種數學方法,促進了數學分支的發展,歌德巴赫猜想本身,並沒有實際的意義,可是與這個問題相關的數學體系,必然會得到發展,這是非常有可能的,人類自我提出問題,解決問題,然後完善自我挑戰,並不是說意義何在,這是人類的天性,有了問題就去解決問題,尋求答案,也許就是這個猜想的本質。 人類歷史上有了歐幾里得幾何以後,我們發展出羅巴切夫斯基幾何,黎曼幾何,都是有,相對意義的。 還是那個話,問題本身的答案也許沒有那麼重要,但是與證明的過程和相關應用的數學分支才是最重要的。 如果有新的數學體系出現,又何樂而不為呢??

  • 中秋節和大豐收的關聯?
  • 建安區高一女生從教學樓5層跳下,正在搶救;事發前因吸菸被老師要求寫說明,藉口上廁所離開老師辦公室。你怎麼看?