回覆列表
  • 1 # krlhr2274

    設一元二次方程ay^2+by+c=0(a,b,c屬於實數且a不等於0)中兩根y1,y2的關係:y1+y2=-b/a;y1y2=c/a。一元二次方程的根的判別式為 (a,b,c分別為一元二次方程的二次項係數,一次項係數和常數項)。韋達定理與根的判別式的關係更是密不可分。根的判別式是判定方程是否有實根的充要條件,韋達定理說明了根與係數的關係。無論方程有無實數根,實係數一元二次方程的根與係數之間適合韋達定理。判別式與韋達定理的結合,則更有效地說明與判定一元二次方程根的狀況和特徵。擴充套件資料發展簡史:法國數學家弗朗索瓦·韋達於1615年在著作《論方程的識別與訂正》中改進了三、四次方程的解法,還對n=2、3的情形,建立了方程根與係數之間的關係,現代稱之為韋達定理。 韋達最早發現代數方程的根與係數之間有這種關係,因此,人們把這個關係稱為韋達定理。韋達在16世紀就得出這個定理,證明這個定理要依靠代數基本定理,而代數基本定理卻是在1799年才由高斯作出第一個實質性的論性。

  • 中秋節和大豐收的關聯?
  • 冷凍餃子可以放多久?