首頁>Club>
6
回覆列表
  • 1 # 樂在其中二

    cot30度等於根號3,cot45度等於1,cot60度等於3分之根號3,cot90度等於0。

  • 2 # 髒話比謊話乾淨558

    cot0=無

    cot30=1.732050808 根號3

    cot45=1

    cot60=0.577350269 三分之根號3

    cot90=0

    三角函式是數學中屬於初等函式中的超越函式的一類函式。它們的本質是任意角的集合與一個比值的集合的變數之間的對映。通常的三角函式是在平面直角座標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴充套件到複數系。

    由於三角函式的週期性,它並不具有單值函式意義上的反函式。

    三角函式在複數中有較為重要的應用。在物理學中,三角函式也是常用的工具。

    基本初等內容

    它有六種基本函式(初等基本表示):

    函式名 正弦 餘弦 正切 餘切 正割 餘割

    在平面直角座標系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的座標為(x,y)有

    正弦函式 sinθ=y/r

    餘弦函式 cosθ=x/r

    正切函式 tanθ=y/x

    餘切函式 cotθ=x/y

    正割函式 secθ=r/x

    餘割函式 cscθ=r/y

    (斜邊為r,對邊為y,鄰邊為x。)

    以及兩個不常用,已趨於被淘汰的函式:

    正矢函式 versinθ =1-cosθ

    餘矢函式 coversθ =1-sinθ

    同角三角函式間的基本關係式:

    [編輯本段]

    ·平方關係:

    sin^2(α)+cos^2(α)=1

    tan^2(α)+1=sec^2(α)

    cot^2(α)+1=csc^2(α)

    ·積的關係:

    sinα=tanα*cosα

    cosα=cotα*sinα

    tanα=sinα*secα

    cotα=cosα*cscα

    secα=tanα*cscα

    cscα=secα*cotα

    ·倒數關係:

    tanα·cotα=1

    sinα·cscα=1

    cosα·secα=1

    直角三角形ABC中,

    角A的正弦值就等於角A的對邊比斜邊,

    餘弦等於角A的鄰邊比斜邊

    正切等於對邊比鄰邊,

    ·三角函式恆等變形公式

    ·兩角和與差的三角函式:

    cos(α+β)=cosα·cosβ-sinα·sinβ

    cos(α-β)=cosα·cosβ+sinα·sinβ

    sin(α±β)=sinα·cosβ±cosα·sinβ

    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

    ·三角和的三角函式:

    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

    ·輔助角公式:

    Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

    sint=B/(A^2+B^2)^(1/2)

    cost=A/(A^2+B^2)^(1/2)

    tant=B/A

    Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

    ·倍角公式:

    sin(2α)=2sinα·cosα=2/(tanα+cotα)

    cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

    tan(2α)=2tanα/[1-tan^2(α)]

    ·三倍角公式:

    sin(3α)=3sinα-4sin^3(α)

    cos(3α)=4cos^3(α)-3cosα

    ·半形公式:

    sin(α/2)=±√((1-cosα)/2)

    cos(α/2)=±√((1+cosα)/2)

    tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

    ·降冪公式

    sin^2(α)=(1-cos(2α))/2=versin(2α)/2

    cos^2(α)=(1+cos(2α))/2=covers(2α)/2

    tan^2(α)=(1-cos(2α))/(1+cos(2α))

    ·萬能公式:

    sinα=2tan(α/2)/[1+tan^2(α/2)]

    cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

    tanα=2tan(α/2)/[1-tan^2(α/2)]

    ·積化和差公式:

    sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

    cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

    cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

    sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

    ·和差化積公式:

    sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

    sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

    cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

    cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

    ·推導公式

    tanα+cotα=2/sin2α

    tanα-cotα=-2cot2α

    1+cos2α=2cos^2α

    1-cos2α=2sin^2α

    1+sinα=(sinα/2+cosα/2)^2

    ·其他:

    sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

    cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

    sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

    tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

    三角函式的角度換算

    [編輯本段]

    公式一:

    設α為任意角,終邊相同的角的同一三角函式的值相等:

    sin(2kπ+α)=sinα

    cos(2kπ+α)=cosα

    tan(2kπ+α)=tanα

    cot(2kπ+α)=cotα

    公式二:

    設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:

    sin(π+α)=-sinα

    cos(π+α)=-cosα

    tan(π+α)=tanα

    cot(π+α)=cotα

    公式三:

    任意角α與 -α的三角函式值之間的關係:

    sin(-α)=-sinα

    cos(-α)=cosα

    tan(-α)=-tanα

    cot(-α)=-cotα

    公式四:

    利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:

    sin(π-α)=sinα

    cos(π-α)=-cosα

    tan(π-α)=-tanα

    cot(π-α)=-cotα

    公式五:

    利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:

    sin(2π-α)=-sinα

    cos(2π-α)=cosα

    tan(2π-α)=-tanα

    cot(2π-α)=-cotα

    公式六:

    π/2±α及3π/2±α與α的三角函式值之間的關係:

    sin(π/2+α)=cosα

    cos(π/2+α)=-sinα

    tan(π/2+α)=-cotα

    cot(π/2+α)=-tanα

    sin(π/2-α)=cosα

    cos(π/2-α)=sinα

    tan(π/2-α)=cotα

    cot(π/2-α)=tanα

    sin(3π/2+α)=-cosα

    cos(3π/2+α)=sinα

    tan(3π/2+α)=-cotα

    cot(3π/2+α)=-tanα

    sin(3π/2-α)=-cosα

    cos(3π/2-α)=-sinα

    tan(3π/2-α)=cotα

    cot(3π/2-α)=tanα

    (以上k∈Z)

    部分高等內容

    [編輯本段]

    ·高等代數中三角函式的指數表示(由泰勒級數易得):

    sinx=[e^(ix)-e^(-ix)]/(2i)

    cosx=[e^(ix)+e^(-ix)]/2

    tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

    泰勒展開有無窮級數,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

    此時三角函式定義域已推廣至整個複數集。

    ·三角函式作為微分方程的解:

    對於微分方程組 y=-y'';y=y'''',有通解Q,可證明

    Q=Asinx+Bcosx,因此也可以從此出發定義三角函式。

    補充:由相應的指數表示我們可以定義一種類似的函式——雙曲函式,其擁有很多與三角函式的類似的性質,二者相映成趣。

    特殊三角函式值

    [編輯本段]

    a 0` 30` 45` 60` 90`

    sina 0 1/2 √2/2 √3/2 1

    cosa 1 √3/2 √2/2 1/2 0

    tana 0 √3/3 1 √3 None

    cota None √3 1 √3/3 0

    三角函式的計算

    [編輯本段]

    冪級數

    c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

    c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

    它們的各項都是正整數冪的冪函式, 其中c0,c1,c2,...cn...及a都是常數, 這種級數稱為冪級數.

    泰勒展開式(冪級數展開法):

    f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...

    實用冪級數:

    ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

    ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)

    sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)

    cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞)

    arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)

    arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)

    arctan x = x - x^3/3 + x^5/5 - ... (x≤1)

    sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞)

    cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞<x<∞)

    arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1)

    arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)

    在解初等三角函式時,只需記住公式便可輕鬆作答,在競賽中,往往會用到與影象結合的方法求三角函式值、三角函式不等式、面積等等。

  • 3 # 灕江之舟


    特殊角 cot30°= √3、cot45°=1、cot60°=(√3)/3、cot90°=0


    cot是三角函數里的餘切三角函式符號,此符號在以前寫作ctg。

    cot座標系表示:cotθ=x/y,在三角函式中cotθ=cosθ/sinθ,當θ≠kπ,k∈Z時cotθ=1/tanθ (當θ=kπ,k∈Z時,cotθ不存在)。

    角A的鄰邊比上角A的對邊。

    作用:在直角三角形中,將大小為θ(單位為弧度)的角鄰邊長度比對邊長度的比值求出,函式值為上述比的比值,也是tan(θ)的倒數。

  • 中秋節和大豐收的關聯?
  • 上聯:剪紅刻翠非吾志,怎麼對下聯?