這可以推匯出一個【可行的】統一公式,做題時直接代入條件計算。其實方法很多的,有《截距法》(求對稱直線的截距);《垂足1)求出過點垂直於直線的垂線方程;2)找出垂足;3)求出垂足對稱點(用中點公式);4)由《點斜式》方程寫出對稱方程,然後整理成一般型。【點:垂足的對稱點;斜率:已知直線的斜率】例:求直線 x+2y+3=0 以點 A(4,5)為對稱中心的對稱方程1)垂線方程 2x-y+c"=0 => 8-5+c"=0 => c"=-3=> 2x-y-3=02)垂足 聯立原直線和垂線方程,解得 B(3/5,-9/5)3)對稱點 2xa=x"+xb => x"=8-3/5=37/52ya=y"+yb => y"=10+9/5=59/54) y-59/5=(-1/2)(x-37/5) => x+2y-31=0 為所求。
這可以推匯出一個【可行的】統一公式,做題時直接代入條件計算。其實方法很多的,有《截距法》(求對稱直線的截距);《垂足1)求出過點垂直於直線的垂線方程;2)找出垂足;3)求出垂足對稱點(用中點公式);4)由《點斜式》方程寫出對稱方程,然後整理成一般型。【點:垂足的對稱點;斜率:已知直線的斜率】例:求直線 x+2y+3=0 以點 A(4,5)為對稱中心的對稱方程1)垂線方程 2x-y+c"=0 => 8-5+c"=0 => c"=-3=> 2x-y-3=02)垂足 聯立原直線和垂線方程,解得 B(3/5,-9/5)3)對稱點 2xa=x"+xb => x"=8-3/5=37/52ya=y"+yb => y"=10+9/5=59/54) y-59/5=(-1/2)(x-37/5) => x+2y-31=0 為所求。