本題你漏了積分限,積分限應是[0--->π]
∫[0--->π]xf(sinx)dx
做變數代換,令x=π-u,則dx=-du,u:π--->0
=-∫[π--->0](π-u)f(sin(π-u))du
=∫[0--->π](π-u)f(sinu)du
=∫[0--->π]πf(sinu)du-∫[0--->π]uf(sinu)du
定積分可隨便換積分變數
=∫[0--->π]πf(sinx)dx-∫[0--->π]xf(sinx)dx
將-∫[0--->π]xf(sinx)dx移動等式左邊與左邊合併得
2∫[0--->π]xf(sinx)dx=π∫[0--->π]f(sinx)dx
即:∫[0--->π]xf(sinx)dx=π/2∫[0--->π]f(sinx)dx
本題你漏了積分限,積分限應是[0--->π]
∫[0--->π]xf(sinx)dx
做變數代換,令x=π-u,則dx=-du,u:π--->0
=-∫[π--->0](π-u)f(sin(π-u))du
=∫[0--->π](π-u)f(sinu)du
=∫[0--->π]πf(sinu)du-∫[0--->π]uf(sinu)du
定積分可隨便換積分變數
=∫[0--->π]πf(sinx)dx-∫[0--->π]xf(sinx)dx
將-∫[0--->π]xf(sinx)dx移動等式左邊與左邊合併得
2∫[0--->π]xf(sinx)dx=π∫[0--->π]f(sinx)dx
即:∫[0--->π]xf(sinx)dx=π/2∫[0--->π]f(sinx)dx