-
1 # 一個正能量的心
-
2 # 本大奎
三角函式合併公式有:sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2];
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2];
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2];
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2];
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB);
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)。
三角函式是數學中屬於初等函式中的超越函式的函式。它們的本質是任何角的集合與一個比值的集合的變數之間的對映。通常的三角函式是在平面直角座標系中定義的。其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴充套件到複數系。
-
3 # 髒話比謊話乾淨558
三角函式合併公式有:sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2];
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2];
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2];
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2];
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB);
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)。
三角函式是數學中屬於初等函式中的超越函式的函式。它們的本質是任何角的集合與一個比值的集合的變數之間的對映。通常的三角函式是在平面直角座標系中定義的。其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴充套件到複數系。
-
4 # 使用者4510654793905
11、三角函式的公式平常針對不同條件的常用的兩個公式sin^2(α)+cos^2(α)=1,tanα*cotα=1。
22、三角函式(也叫做圓函式)是角的函式;它們在研究三角形和建模週期現象和許多其他應用中是很重要的。三角函式通常定義為包含這個角的直角三角形的兩個邊的比率,也可以等價的定義為單位圓上的各種線段的長度。更現代的定義把它們表達為無窮級數或特定微分方程的解,允許它們擴充套件到任意正數和負數值,甚至是複數值。
回覆列表
1)asin(a)+bcos(a)=√(a?b?sin(a+c) [其中,tan(c)=b/a]
(2)asin(a)-bcos(a)=√(a?b?cos(a-c) [其中,tan(c)=a/b]