0,通常表示什麼也沒有。但實際上零表示的意義非常豐富。
0不但可以表示沒有,也可以表示有。電臺、電視裡報告氣溫是0℃,並不是指沒有溫度,而是相當於華氏表32度,這也是冰點的溫度。0還可以表示起點,如發射導彈時的口令是:“9,8,7,6,5,4,3,2,1,0——發射”。0在數軸上作為原點,也是起點的意思。0還可以表示精確度。如在近似計算中,7.5與7.50表示精確程度不同。
在實數中,0又是正數與負數間的惟一中性數,具備下面一些運算性質:
a+0=0+a=a.
a-0=a.0-a=-a.
0×a=a×0=0,y0÷a=0,(a≠0)
0不能作除數,0也沒有倒數;
0的絕對值和相反數都是0;
任意多個0相加和相乘都等於0。
在指數和階乘運算中,還有:a°=1(其中a≠0),0!=1。
0在複數中,是惟一輻角沒有定義的複數。0還沒有對數。現代電子計算機用的二進位制中,0還是一個基本數碼。
在0發明之前,我們祖先記數的方法是繁瑣而不完善的,要記一個大數就要將某些符號重寫多次。在採用了印度一阿拉伯數碼,而沒有用0這個符號時,前人將一百萬、三萬、四百、五這幾個數之和表示為:1345,這種表示就會產生誤解,或是一百零三萬四百零五,或是一千三百四十五。於是用打格的辦法來區分,空的地方表示空位。但這又使運算變得很麻煩。採用0後,就可以簡潔地寫成:1030405。因此,沒有采用0之前,可以說記數法是不完整的。
0是數學中最有用的符號之一,但它的發明是來之不易的。古埃及雖建造了宏偉的金字塔,但不會使用0;巴比倫人發明了楔形文字,也不會使用0;中國古代用籌運算時,怕定位發生錯誤,開始用□代表空位,為書寫方便逐漸寫成○。公元2世紀希臘人在天文學上用○表示空位,但不普遍。比較公認的是印度人在公元6世紀最早用黑點(·)表示零,後來逐漸變成了0。
0,通常表示什麼也沒有。但實際上零表示的意義非常豐富。
0不但可以表示沒有,也可以表示有。電臺、電視裡報告氣溫是0℃,並不是指沒有溫度,而是相當於華氏表32度,這也是冰點的溫度。0還可以表示起點,如發射導彈時的口令是:“9,8,7,6,5,4,3,2,1,0——發射”。0在數軸上作為原點,也是起點的意思。0還可以表示精確度。如在近似計算中,7.5與7.50表示精確程度不同。
在實數中,0又是正數與負數間的惟一中性數,具備下面一些運算性質:
a+0=0+a=a.
a-0=a.0-a=-a.
0×a=a×0=0,y0÷a=0,(a≠0)
0不能作除數,0也沒有倒數;
0的絕對值和相反數都是0;
任意多個0相加和相乘都等於0。
在指數和階乘運算中,還有:a°=1(其中a≠0),0!=1。
0在複數中,是惟一輻角沒有定義的複數。0還沒有對數。現代電子計算機用的二進位制中,0還是一個基本數碼。
在0發明之前,我們祖先記數的方法是繁瑣而不完善的,要記一個大數就要將某些符號重寫多次。在採用了印度一阿拉伯數碼,而沒有用0這個符號時,前人將一百萬、三萬、四百、五這幾個數之和表示為:1345,這種表示就會產生誤解,或是一百零三萬四百零五,或是一千三百四十五。於是用打格的辦法來區分,空的地方表示空位。但這又使運算變得很麻煩。採用0後,就可以簡潔地寫成:1030405。因此,沒有采用0之前,可以說記數法是不完整的。
0是數學中最有用的符號之一,但它的發明是來之不易的。古埃及雖建造了宏偉的金字塔,但不會使用0;巴比倫人發明了楔形文字,也不會使用0;中國古代用籌運算時,怕定位發生錯誤,開始用□代表空位,為書寫方便逐漸寫成○。公元2世紀希臘人在天文學上用○表示空位,但不普遍。比較公認的是印度人在公元6世紀最早用黑點(·)表示零,後來逐漸變成了0。