泰勒公式是高等數學中的一個非常重要的內容,它將一些複雜的函式逼近近似地表示為簡單的多項式函式,常用的泰勒公式如下所示:
1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……(-∞<x<∞)
4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)
5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
6、arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)
7、arctan x = x - x^3/3 + x^5/5 -……(x≤1)
8、sh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)
9、ch x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)
10、arcsh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)
11、arcth x = x + x^3/3 + x^5/5 + ……(|x|<1)
泰勒公式是高等數學中的一個非常重要的內容,它將一些複雜的函式逼近近似地表示為簡單的多項式函式,常用的泰勒公式如下所示:
1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……(-∞<x<∞)
4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)
5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
6、arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)
7、arctan x = x - x^3/3 + x^5/5 -……(x≤1)
8、sh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)
9、ch x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)
10、arcsh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)
11、arcth x = x + x^3/3 + x^5/5 + ……(|x|<1)