-
1 # 我們一起衝過去
-
2 # 使用者8738127538578
一、理解二次函式的內涵及本質 .
二次函式 y=ax2 + bx + c ( a ≠ 0 , a 、 b 、 c 是常數)中含有兩個變數 x 、 y ,我們只要先確定其中一個變數,就可利用解析式求出另一個變數,即得到一組解;而一組解就是一個點的座標,實際上二次函式的圖象就是由無數個這樣的點構成的圖形 .
二、熟悉幾個特殊型二次函式的圖象及性質 .
1 、透過描點,觀察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 圖象的形狀及位置,熟悉各自圖象的基本特徵,反之根據拋物線的特徵能迅速確定它是哪一種解析式 .
2 、理解圖象的平移口訣“加上減下,加左減右” .
y=ax2 → y=a ( x + h ) 2 + k “加上減下”是針對 k 而言的,“加左減右”是針對 h 而言的 .
總之,如果兩個二次函式的二次項係數相同,則它們的拋物線形狀相同,由於頂點座標不同,所以位置不同,而拋物線的平移實質上是頂點的平移,如果拋物線是一般形式,應先化為頂點式再平移 .
3 、透過描點畫圖、圖象平移,理解並明確解析式的特徵與圖象的特徵是完全相對應的,我們在解題時要做到胸中有圖,看到函式就能在頭腦中反映出它的圖象的基本特徵;
4 、在熟悉函式圖象的基礎上,透過觀察、分析拋物線的特徵,來理解二次函式的增減性、極值等性質;利用圖象來判別二次函式的係數 a 、 b 、 c 、△以及由係數組成的代數式的符號等問題 .
三、要充分利用拋物線“頂點”的作用 .
1 、要能準確靈活地求出“頂點” . 形如 y=a ( x + h ) 2 + K →頂點(- h,k ),對於其它形式的二次函式,我們可化為頂點式而求出頂點 .
2 、理解頂點、對稱軸、函式最值三者的關係 . 若頂點為(- h , k ),則對稱軸為 x= - h , y 最大(小) =k ;反之,若對稱軸為 x=m , y 最值 =n ,則頂點為( m , n );理解它們之間的關係,在分析、解決問題時,可達到舉一反三的效果 .
3 、利用頂點畫草圖 . 在大多數情況下,我們只需要畫出草圖能幫助我們分析、解決問題就行了,這時可根據拋物線頂點,結合開口方向,畫出拋物線的大致圖象 .
四、理解掌握拋物線與座標軸交點的求法 .
一般地,點的座標由橫座標和縱座標組成,我們在求拋物線與座標軸的交點時,可優先確定其中一個座標,再利用解析式求出另一個座標 . 如果方程無實數根,則說明拋物線與 x 軸無交點 .
從以上求交點的過程可以看出,求交點的實質就是解方程,而且與方程的根的判別式聯絡起來,利用根的判別式判定拋物線與 x 軸的交點個數 .
五、靈活應用待定係數法求二次函式的解析式 .
用待定係數法求二次函式的解析式是我們求解析式時最常規有效的方法,求解析式時往往可選擇多種方法,如能綜合利用二次函式的圖象與性質,靈活應用數形結合的思想,不僅可以簡化計算,而且對進一步理解二次函式的本質及數與形的關係大有裨益 .
回覆列表
1、要理解函式的意義。
2、要記住函式的幾個表達形式,注意區分。
3、一般式,頂點式,交點式,等,區分對稱軸,頂點,影象,y隨著x的增大而減小(增大)(增減值)等的差異性。
4、聯絡實際對函式圖象的理解。
5、計算時,看影象時切記取值範圍。
6、隨圖象理解數字的變化而變化。