回覆列表
-
1 # 璦曉風信子
-
2 # 我是打上鏡
二叉樹的鏈式儲存是指:兩個兒子結點分別用指標指向。而儲存結構值的是:假設該結點在陣列中的位置為 i ,則它的左兒子的位置為 2i ,右兒子為 2i + 1. ( i 從1開始) 所以你只要建立一個陣列,從鏈式儲存的根節點開始,用中序遍歷遍歷樹,按中序遍歷的順序儲存在陣列中。即可完成順序儲存結構的轉化。 相關的遍歷你可以檢視相關資料,中序遍歷即訪問順序為左兒子-根-右兒子的順序訪問。 希望對你有所幫助。
-
3 # 靜靜PiZriQ
優點:
二叉樹的遍歷本質上是將一個複雜的非線性結構轉換為線性結構,使每個結點都有了唯一前驅和後繼(第一個結點無前驅,最後一個結點無後繼)。對於二叉樹的一個結點,查詢其左右子女是方便的,其前驅後繼只有在遍歷中得到。
線索二叉樹的優點是便於在中序下查詢前驅結點和後繼結點。
-
4 # 使用者3096396663001
二叉樹的遍歷分為以下三種:
先序遍歷:遍歷順序規則為【根左右】
中序遍歷:遍歷順序規則為【左根右】
後序遍歷:遍歷順序規則為【左右根】
先序遍歷也叫做先根遍歷、前序遍歷,可記做根左右(二叉樹父結點向下先左後右)。
首先訪問根結點然後遍歷左子樹,最後遍歷右子樹。在遍歷左、右子樹時,仍然先訪問根結點,然後遍歷左子樹,最後遍歷右子樹,如果二叉樹為空則返回。
先序遍歷(Pre-order),按照根左右的順序沿一定路徑經過路徑上所有的結點。在二叉樹中,先根後左再右。巧記:根左右。
二叉樹的先序遍歷就是先遍歷根節點,然後在遍歷左節點,最後遍歷右節點。
因此,二者的意思,是一致的。