是一種指數函式。
y等於e的x次方是一種指數函式,其影象是單調遞增,x∈R,y>0,與y軸相交於(0,1)點,影象位於X軸上方,第二象限無限接近X軸。
在指數函式的定義表示式中,在ax前的係數必須是數1,自變數x必須在指數的位置上,且不能是x的其他表示式,否則,就不是指數函式。
指數函式相關定義:
(1) 指數函式的定義域為R,這裡的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函式的定義域不連續,因此我們不予考慮,同時a等於0函式無意義一般也不考慮。
(2) 指數函式的值域為(0, +∞)。
(3) 函式圖形都是上凹的。
(4) a>1時,則指數函式單調遞增;若0<a<1,則為單調遞減的。
(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(不等於0)函式的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函式的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
f'(x)=(e^x-xe^x)÷X^2 (-∞,1)單調遞減,(1,十∞)單調遞增
是一種指數函式。
y等於e的x次方是一種指數函式,其影象是單調遞增,x∈R,y>0,與y軸相交於(0,1)點,影象位於X軸上方,第二象限無限接近X軸。
在指數函式的定義表示式中,在ax前的係數必須是數1,自變數x必須在指數的位置上,且不能是x的其他表示式,否則,就不是指數函式。
指數函式相關定義:
(1) 指數函式的定義域為R,這裡的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函式的定義域不連續,因此我們不予考慮,同時a等於0函式無意義一般也不考慮。
(2) 指數函式的值域為(0, +∞)。
(3) 函式圖形都是上凹的。
(4) a>1時,則指數函式單調遞增;若0<a<1,則為單調遞減的。
(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(不等於0)函式的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函式的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。