∫ 1/sinx dx = ∫ cscx dx
= ∫ cscx * (cscx - cotx)/(cscx - cotx) dx
= ∫ (- cscxcotx + csc²x)/(cscx - cotx) dx
= ∫ d(cscx - cotx)/(cscx - cotx)
= ln|cscx - cotx| + C
∫ 1/sinx dx
= ∫ 1/[2sin(x/2)cos(x/2)] dx
= ∫ 1/[cos²(x/2)tan(x/2)] d(x/2)
= ∫ 1/[tan(x/2)] d[tan(x/2)]
= ln|tan(x/2)| + C
∫ 1/sinx dx = ∫ sinx/sin²x dx
= ∫ 1/(cos²x - 1) d(cosx)
= (1/2)∫ [(cosx + 1) - (cosx - 1)]/[(cosx + 1)(cosx - 1)] d(cosx)
= (1/2)∫ [1/(cosx - 1) - 1/(cosx + 1)] d(cosx)
= (1/2)ln|(cosx - 1)/(cosx + 1)| + C
= (1/2)ln|[2sin²(x/2)]/[2cos²(x/2)]| + C
= (1/2) * 2ln|tan(x/2)| + C
萬能代換:令y = tan(x/2)、dx = 2dy/(1 + y²)、sinx = 2y/(1 + y²)
∫ 1/sinx dx = ∫ 1/[2y/(1 + y²)] * 2dy/(1 + y²)
= ∫ (1 + y²)/(2y) * 2dy/(1 + y²)
= ∫ 1/y dy
= ln|y| + C
∫ 1/sinx dx = ∫ cscx dx
= ∫ cscx * (cscx - cotx)/(cscx - cotx) dx
= ∫ (- cscxcotx + csc²x)/(cscx - cotx) dx
= ∫ d(cscx - cotx)/(cscx - cotx)
= ln|cscx - cotx| + C
∫ 1/sinx dx
= ∫ 1/[2sin(x/2)cos(x/2)] dx
= ∫ 1/[cos²(x/2)tan(x/2)] d(x/2)
= ∫ 1/[tan(x/2)] d[tan(x/2)]
= ln|tan(x/2)| + C
∫ 1/sinx dx = ∫ sinx/sin²x dx
= ∫ 1/(cos²x - 1) d(cosx)
= (1/2)∫ [(cosx + 1) - (cosx - 1)]/[(cosx + 1)(cosx - 1)] d(cosx)
= (1/2)∫ [1/(cosx - 1) - 1/(cosx + 1)] d(cosx)
= (1/2)ln|(cosx - 1)/(cosx + 1)| + C
= (1/2)ln|[2sin²(x/2)]/[2cos²(x/2)]| + C
= (1/2) * 2ln|tan(x/2)| + C
= ln|tan(x/2)| + C
萬能代換:令y = tan(x/2)、dx = 2dy/(1 + y²)、sinx = 2y/(1 + y²)
∫ 1/sinx dx = ∫ 1/[2y/(1 + y²)] * 2dy/(1 + y²)
= ∫ (1 + y²)/(2y) * 2dy/(1 + y²)
= ∫ 1/y dy
= ln|y| + C
= ln|tan(x/2)| + C