首頁>Club>
13
回覆列表
  • 1 # 五個

    ∫ 1/sinx dx = ∫ cscx dx


    = ∫ cscx * (cscx - cotx)/(cscx - cotx) dx


    = ∫ (- cscxcotx + csc²x)/(cscx - cotx) dx


    = ∫ d(cscx - cotx)/(cscx - cotx)


    = ln|cscx - cotx| + C


    ∫ 1/sinx dx


    = ∫ 1/[2sin(x/2)cos(x/2)] dx


    = ∫ 1/[cos²(x/2)tan(x/2)] d(x/2)


    = ∫ 1/[tan(x/2)] d[tan(x/2)]


    = ln|tan(x/2)| + C


    ∫ 1/sinx dx = ∫ sinx/sin²x dx


    = ∫ 1/(cos²x - 1) d(cosx)


    = (1/2)∫ [(cosx + 1) - (cosx - 1)]/[(cosx + 1)(cosx - 1)] d(cosx)


    = (1/2)∫ [1/(cosx - 1) - 1/(cosx + 1)] d(cosx)


    = (1/2)ln|(cosx - 1)/(cosx + 1)| + C


    = (1/2)ln|[2sin²(x/2)]/[2cos²(x/2)]| + C


    = (1/2) * 2ln|tan(x/2)| + C


    = ln|tan(x/2)| + C


    萬能代換:令y = tan(x/2)、dx = 2dy/(1 + y²)、sinx = 2y/(1 + y²)


    ∫ 1/sinx dx = ∫ 1/[2y/(1 + y²)] * 2dy/(1 + y²)


    = ∫ (1 + y²)/(2y) * 2dy/(1 + y²)


    = ∫ 1/y dy


    = ln|y| + C


    = ln|tan(x/2)| + C

  • 中秋節和大豐收的關聯?
  • 為什麼一些手機不能進入開發者模式?