如果σ是電導(單位西門子),I是電流(單位安培),E是電壓(單位伏特),則:σ = I/E
電導是電阻的倒數,即 G=L/R 式中R—電阻,單位歐姆(Ω) G—電導,單位西門子(S) 1S=103mS=106µS 因R=ρL/F,代入上式,則得到: G=IF/(ρL)對於一對固定電極來講,二極間的距離不變,電極面積也不變,因此L與F為一個常數。
令:J=L/F,J就稱為電極常數,可得到 G=I2/(ρJ)式中:K=1/ρ就稱為電導率,單位為S/cm。1S/cm=103mS/cm=106µS/cm。
電導率K的意義就是截面積為lcm2,長度為lcm的 導體的電導。當電導常數J=1時,電導率就等於電導,電導率是不同電解質溶液導電能力的表現。
電導率K,電導G,電阻率ρ三者之間的關係如下: K=JG=I/ρ 式中J為電極常數,例如:電導率為O.1µS/cm的高純水,其電阻率應為: ρ=I/K=1/0.1×106=10MΩcm。
擴充套件資料
影響因素:
1、溫度
電導率與溫度具有很大相關性。金屬的電導率隨著溫度的升高而減小。半導體的電導率隨著溫度的升高而增加。在一段溫度值域內,電導率可以被近似為與溫度成正比。
為了要比較物質在不同溫度狀況的電導率,必須設定一個共同的參考溫度。電導率與溫度的相關性,時常可以表達為,電導率對上溫度線圖的斜率。
2、摻雜程度
固態半導體的摻雜程度會造成電導率很大的變化。增加摻雜程度會造成電導率增高。水溶液的電導率高低相依於其內含溶質鹽的濃度,或其它會分解為電解質的化學雜質。
水樣本的電導率是測量水的含鹽成分、含離子成分、含雜質成分等等的重要指標。水越純淨,電導率越低(電阻率越高)。水的電導率時常以電導係數來紀錄;電導係數是水在 25°C 溫度的電導率。
3、各向異性
有些物質會有各向異性(anisotropy) 的電導率,必需用 3 X 3 矩陣來表達(使用數學術語,第二階張量,通常是對稱的)。
如果σ是電導(單位西門子),I是電流(單位安培),E是電壓(單位伏特),則:σ = I/E
電導是電阻的倒數,即 G=L/R 式中R—電阻,單位歐姆(Ω) G—電導,單位西門子(S) 1S=103mS=106µS 因R=ρL/F,代入上式,則得到: G=IF/(ρL)對於一對固定電極來講,二極間的距離不變,電極面積也不變,因此L與F為一個常數。
令:J=L/F,J就稱為電極常數,可得到 G=I2/(ρJ)式中:K=1/ρ就稱為電導率,單位為S/cm。1S/cm=103mS/cm=106µS/cm。
電導率K的意義就是截面積為lcm2,長度為lcm的 導體的電導。當電導常數J=1時,電導率就等於電導,電導率是不同電解質溶液導電能力的表現。
電導率K,電導G,電阻率ρ三者之間的關係如下: K=JG=I/ρ 式中J為電極常數,例如:電導率為O.1µS/cm的高純水,其電阻率應為: ρ=I/K=1/0.1×106=10MΩcm。
擴充套件資料
影響因素:
1、溫度
電導率與溫度具有很大相關性。金屬的電導率隨著溫度的升高而減小。半導體的電導率隨著溫度的升高而增加。在一段溫度值域內,電導率可以被近似為與溫度成正比。
為了要比較物質在不同溫度狀況的電導率,必須設定一個共同的參考溫度。電導率與溫度的相關性,時常可以表達為,電導率對上溫度線圖的斜率。
2、摻雜程度
固態半導體的摻雜程度會造成電導率很大的變化。增加摻雜程度會造成電導率增高。水溶液的電導率高低相依於其內含溶質鹽的濃度,或其它會分解為電解質的化學雜質。
水樣本的電導率是測量水的含鹽成分、含離子成分、含雜質成分等等的重要指標。水越純淨,電導率越低(電阻率越高)。水的電導率時常以電導係數來紀錄;電導係數是水在 25°C 溫度的電導率。
3、各向異性
有些物質會有各向異性(anisotropy) 的電導率,必需用 3 X 3 矩陣來表達(使用數學術語,第二階張量,通常是對稱的)。