求期望:ξ
期望:Eξ=x1p1+x2p2+……+xnpn
方差:s? 方差公式:s?1/n[(x1-x)?(x2-x)?……+(xn-x)瞉
注:x上有“-”
正態分佈(Normal distribution)又名高斯分佈(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的機率分佈,在統計學的許多方面有著重大的影響力。若隨機變數X服從一個數學期望為μ、方差為σ^2的高斯分佈,記為N(μ,σ^2)。其機率密度函式為正態分佈的期望值μ決定了其位置,其標準差σ決定了分佈的幅度。因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。我們通常所說的標準正態分佈是μ = 0,σ = 1的正態分佈。
x 服從[a,b] 上的均勻分佈 E(x) = (a+b)/2 D(x) = (b-a)^2/12
求期望:ξ
期望:Eξ=x1p1+x2p2+……+xnpn
方差:s? 方差公式:s?1/n[(x1-x)?(x2-x)?……+(xn-x)瞉
注:x上有“-”
正態分佈(Normal distribution)又名高斯分佈(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的機率分佈,在統計學的許多方面有著重大的影響力。若隨機變數X服從一個數學期望為μ、方差為σ^2的高斯分佈,記為N(μ,σ^2)。其機率密度函式為正態分佈的期望值μ決定了其位置,其標準差σ決定了分佈的幅度。因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。我們通常所說的標準正態分佈是μ = 0,σ = 1的正態分佈。