具體演算法如下:
1、ax^3+bx^2+cx+d的標準型。
2、化成x^3+(b/a)x^2+(c/a)x+(d/a)=0。
3、可以寫成x^3+a1*x^2+a2*x+a3=0。
4、其中a1=b/a,a2=c/a,a3=d/a。
5、令y=x-a1/3。
6、則y^3+px+q=0。
7、其中p=-(a1^2/3)+a2,q=(2a1^3/27)-(a1*a2)/3+a3。
擴充套件資料:
三次方程的其他解法:
1、因式分解法
因式分解法不是對所有的三次方程都適用,只對一些三次方程適用.對於大多數的三次方程,只有先求出它的根,才能作因式分解.當然,因式分解的解法很簡便,直接把三次方程降次.例如:解方程x3-x=0
對左邊作因式分解,得x(x+1)(x-1)=0,得方程的三個根:x1=0,x2=1,x3=-1。
2、另一種換元法
對於一般形式的三次方程,先用上文中提到的配方和換元,將方程化為x3+px+q=0的特殊型.令x=z-p/3z代入並化簡,得:z-p/27z+q=0。再令z=w代入,得:w+p/27w+q=0.這實際上是關於w的二次方程.解出w,再順次解出z,x。
3、盛金公式解法
三次方程應用廣泛。用根號解一元三次方程,雖然有著名的卡爾丹公式,並有相應的判別法,但使用卡爾丹公式解題比較複雜,缺乏直觀性。範盛金推匯出一套直接用a、b、c、d表達的較簡明形式的一元三次方程的一般式新求根公式,並建立了新判別法.
具體演算法如下:
1、ax^3+bx^2+cx+d的標準型。
2、化成x^3+(b/a)x^2+(c/a)x+(d/a)=0。
3、可以寫成x^3+a1*x^2+a2*x+a3=0。
4、其中a1=b/a,a2=c/a,a3=d/a。
5、令y=x-a1/3。
6、則y^3+px+q=0。
7、其中p=-(a1^2/3)+a2,q=(2a1^3/27)-(a1*a2)/3+a3。
擴充套件資料:
三次方程的其他解法:
1、因式分解法
因式分解法不是對所有的三次方程都適用,只對一些三次方程適用.對於大多數的三次方程,只有先求出它的根,才能作因式分解.當然,因式分解的解法很簡便,直接把三次方程降次.例如:解方程x3-x=0
對左邊作因式分解,得x(x+1)(x-1)=0,得方程的三個根:x1=0,x2=1,x3=-1。
2、另一種換元法
對於一般形式的三次方程,先用上文中提到的配方和換元,將方程化為x3+px+q=0的特殊型.令x=z-p/3z代入並化簡,得:z-p/27z+q=0。再令z=w代入,得:w+p/27w+q=0.這實際上是關於w的二次方程.解出w,再順次解出z,x。
3、盛金公式解法
三次方程應用廣泛。用根號解一元三次方程,雖然有著名的卡爾丹公式,並有相應的判別法,但使用卡爾丹公式解題比較複雜,缺乏直觀性。範盛金推匯出一套直接用a、b、c、d表達的較簡明形式的一元三次方程的一般式新求根公式,並建立了新判別法.