【解題思路】解答這一類函式問題,首先根據對數的運算公式,換算成底數相同的函式,然後用對數函式的性質比較大小,把圖形畫出來,一目瞭然。
【對數換底公式】
【函式性質】
定義域求解:對數函式y=logax 的定義域是{x 丨x>0},但如果遇到對數型複合函式的定義域的求解,除了要注意大於0以外,還應注意底數大於0且不等於1,如求函式y=logx(2x-1)的定義域,需同時滿足x>0且x≠1
和2x-1>0 ,得到x>1/2且x≠1,即其定義域為 {x 丨x>1/2且x≠1}
值域:實數集R,顯然對數函式無界。
定點:函式影象恆過定點(1,0)。
單調性:a>1時,在定義域上為單調增函式;
對數的影象
0<a<1時,在定義域上為單調減函式。
奇偶性:非奇非偶函式
週期性:不是週期函式
對稱性:無
最值:無
零點:x=1
注意:負數和0沒有對數。
兩句經典話:底真同對數正,底真異對數負。解釋如下:
也就是說:若y=logab (其中a>0,a≠1,b>0)
當0<a<1, 0<b<1時,y=logab>0;
當a>1, b>1時,y=logab>0;
當0<a<1, b>1時,y=logab<0;
當a>1, 0<b<1時,y=logab<0。
【解題思路】解答這一類函式問題,首先根據對數的運算公式,換算成底數相同的函式,然後用對數函式的性質比較大小,把圖形畫出來,一目瞭然。
【對數換底公式】
【函式性質】
定義域求解:對數函式y=logax 的定義域是{x 丨x>0},但如果遇到對數型複合函式的定義域的求解,除了要注意大於0以外,還應注意底數大於0且不等於1,如求函式y=logx(2x-1)的定義域,需同時滿足x>0且x≠1
和2x-1>0 ,得到x>1/2且x≠1,即其定義域為 {x 丨x>1/2且x≠1}
值域:實數集R,顯然對數函式無界。
定點:函式影象恆過定點(1,0)。
單調性:a>1時,在定義域上為單調增函式;
對數的影象
0<a<1時,在定義域上為單調減函式。
奇偶性:非奇非偶函式
週期性:不是週期函式
對稱性:無
最值:無
零點:x=1
注意:負數和0沒有對數。
兩句經典話:底真同對數正,底真異對數負。解釋如下:
也就是說:若y=logab (其中a>0,a≠1,b>0)
當0<a<1, 0<b<1時,y=logab>0;
當a>1, b>1時,y=logab>0;
當0<a<1, b>1時,y=logab<0;
當a>1, 0<b<1時,y=logab<0。