數學u是指並集。
若A和B是集合,則A和B並集是有所有A的元素和所有B的元素,而沒有其他元素的集合。A和B的並集通常寫作 "A∪B",讀作“A並B”,用符號語言表示,即:A∪B={x|x∈A,或x∈B}
形式上,x是A∪B的元素,當且僅當x是A的元素,或x是B的元素。
並集的代數性質:
二元並集(兩個集合的並集)是一種結合運算,即A∪(B∪C) = (A∪B) ∪C。事實上,A∪B∪C也等於這兩個集合,因此圓括號在僅進行並集運算的時候可以省略。相似的,並集運算滿足交換律,即集合的順序任意。
空集是並集運算的單位元。 即 ∅ ∪A=A。對任意集合A,可將空集當作零個集合的並集。
結合交集和補集運算,並集運算使任意冪整合為布林代數。 例如,並集和交集相互滿足分配律,而且這三種運算滿足德·摩根律。 若將並集運算換成對稱差運算,可以獲得相應的布林環。
數學u是指並集。
若A和B是集合,則A和B並集是有所有A的元素和所有B的元素,而沒有其他元素的集合。A和B的並集通常寫作 "A∪B",讀作“A並B”,用符號語言表示,即:A∪B={x|x∈A,或x∈B}
形式上,x是A∪B的元素,當且僅當x是A的元素,或x是B的元素。
並集的代數性質:
二元並集(兩個集合的並集)是一種結合運算,即A∪(B∪C) = (A∪B) ∪C。事實上,A∪B∪C也等於這兩個集合,因此圓括號在僅進行並集運算的時候可以省略。相似的,並集運算滿足交換律,即集合的順序任意。
空集是並集運算的單位元。 即 ∅ ∪A=A。對任意集合A,可將空集當作零個集合的並集。
結合交集和補集運算,並集運算使任意冪整合為布林代數。 例如,並集和交集相互滿足分配律,而且這三種運算滿足德·摩根律。 若將並集運算換成對稱差運算,可以獲得相應的布林環。