回覆列表
  • 1 # 使用者5817774855116

    令t=5-x,顯然它的對稱軸為x=0,且t≤5.∵已知f(x)=x-2x-3的對稱軸為x=1,①當 t=5-x≥1 時,f(t)為增函式,解得-2≤x≤2.在區間[-2,0)上,函式t是增函式,故函式f(5-x)是增函式;在區間[0,2]上,函式t是減函式,故函式f(5-x)是減函式.②當 t=5-x<1 時,f(t)為減函式,解得x<-2,或x>2.在區間(-∞,-2)上,函式t是增函式,故函式f(5-x)是減函式.在區間(2,+∞)上,函式t是減函式,故函式f(5-x)是增函式.綜上可得,函式f(5-x)的增區間為[-2,0)、(2,+∞),減區間為[0,2]、(-∞,-2).

  • 2 # 鎂噠02

    f(x)=x/(x^2-1),x(-1,1)設-1<x1<x2<1f(x1)-f(x2)=x1/(x1^2-1)-x2/(x2^2-1)=[x1(x2^2-1)-x2(x1^2-1)]/(x1^2-1)(x2^2-1)=(x1x2^2-x1-x2x1^2+x2)/(x1^2-1)(x2^2-1)=[x1x2(x2-x1)-(x1-x2)]/(x1^2-1)(x2^2-1)=(x2-x1)(x1x2+1)/(x1^2-1)(x2^2-1)因為-1<x1,<x2<1所有x2-x1>0,x1x2+1>0x1^2<1x2^2<1所以f(x1)>f(x2)所以f(X)在(-1,1)是減函式或者你可以用導數來證明:f(x)"=(-2x^2-1)/(x^2-1)^2<0f(X)在(-1,1)是減函式

  • 3 # 使用者2915554268023131

    設2<x1<x2,則f(x1)-f(x2)=2x1+1x1-2-2x2+1x2-2=5(x2-x1)(x1-2)(x2-2),∵2<x1<x2,∴x2-x1>0,x1-2>0,x2-2>0,∴f(x1)-f(x2)=5(x2-x1)(x1-2)(x2-2)>0,即f(x1)>f(x2)∴函式f(x)在區間(2,+∞)上是減函式. ∴函式f(x)在區間[3,6]上是減函式.∴f(x)的最大值為f(3)=7,f(x)的最小值為f(6)=134.

  • 中秋節和大豐收的關聯?
  • 男生約女生旅遊,什麼方式比較好?