回覆列表
-
1 # 使用者2893793678133
-
2 # 髒話比謊話乾淨558
原方程為ax^2+bx+c=0,互換後方程為cx^2+bx+a=0,原方程的解為(-b±根號b^2-4ac)/2a,互換後的解為(-b±根號b^2-4ac)/2c,分子相同,原方程的解*2a=互換後的解*2c,原方程的解=c/a*互換後的解
原方程為ax^2+bx+c=0,互換後方程為cx^2+bx+a=0,原方程的解為(-b±根號b^2-4ac)/2a,互換後的解為(-b±根號b^2-4ac)/2c,分子相同,原方程的解*2a=互換後的解*2c,原方程的解=c/a*互換後的解
二次函式y=ax^2+bx+c,其中二次項x^2前面的係數a叫做二次項係數,x前面的係數b叫做一次項係數,c叫做常數項。比如:y=3x^2+2x+5,3是二項式係數,2是一次項係數,5是常數項。任何一個一元二次方程 都可以轉換成 ax(2平方)+bx+c=0 (a不等於0)。這裡面 a就是二次項係數。也就是說,(a的一次冪+x的一次冪)整個整體,為二次項。常數是指固定不變的數值。就是除了字母以外的任何數,包括正負整數和正負小數、分數、0和無理數(如π)。如圓的周長和直徑的比π﹑鐵的膨脹係數0.000012等。常數是具有一定含義的名稱,用於代替數字或字串,其值從不改變。數學上常用大寫的"C"來表示某一個常數。一個數學常數,是指一個數值不變的常量,與之相反的是變數。跟大多數物理常數不一樣的地方是,數學常數的定義是獨立於所有物理測量的。