三角形中位線定理:三角形的中位線平行於第三邊(不與中位線接觸),並且等於第三邊的一半。
證明:已知△ABC中,D,E分別是AB,AC兩邊中點。求證DE平行於BC且等於BC/2
過C作AB的平行線交DE的延長線於G點。
∵CG∥AD
∴∠A=∠ACG
∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括號)
∴△ADE≌△CGE (A.S.A)
∴AD=CG(全等三角形對應邊相等)
∵D為AB中點
∴AD=BD
∴BD=CG
又∵BD∥CG
∴BCGD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形)
∴DG∥BC且DG=BC
∴DE=DG/2=BC/2
∴三角形的中位線定理成立
逆定理
逆定理一:在三角形內,與三角形的兩邊相交,平行且等於三角形第三邊一半的線段是三角形的中位線。
逆定理二:在三角形內,經過三角形一邊的中點,且與另一邊平行的線段,是三角形的中位線。
三角形中位線定理:三角形的中位線平行於第三邊(不與中位線接觸),並且等於第三邊的一半。
證明:已知△ABC中,D,E分別是AB,AC兩邊中點。求證DE平行於BC且等於BC/2
過C作AB的平行線交DE的延長線於G點。
∵CG∥AD
∴∠A=∠ACG
∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括號)
∴△ADE≌△CGE (A.S.A)
∴AD=CG(全等三角形對應邊相等)
∵D為AB中點
∴AD=BD
∴BD=CG
又∵BD∥CG
∴BCGD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形)
∴DG∥BC且DG=BC
∴DE=DG/2=BC/2
∴三角形的中位線定理成立
逆定理
逆定理一:在三角形內,與三角形的兩邊相交,平行且等於三角形第三邊一半的線段是三角形的中位線。
逆定理二:在三角形內,經過三角形一邊的中點,且與另一邊平行的線段,是三角形的中位線。