回覆列表
-
1 # CJC名字自己拼
-
2 # s1985516s
a·b=|a|·|b|·cos〈a,b〉是定義,推出交換律,分配率,與數的乘法的結合律,以及垂直時為零.∴(x1,y1)·(x2,y2)=[x1i+y1j]·[x2i+y2j]=x1x2(i·i)+y1y2(j·j)+[x1y2+x2y1](i·j)=x1x2+y1y2.[ i,j是x軸.y軸上的單位向量.i²=1,j²=1,i·j=0 ]
|向量c|=|向量a×向量b|=|a||b|sin<a,b>
向量c的方向與a,b所在的平面垂直,且方向要用“右手法則”判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外積不遵守乘法交換率,因為向量a×向量b= -向量b×向量a
擴充套件資料:
向量幾何表示
向量可以用有向線段來表示。
有向線段的長度表示向量的大小,向量的大小,也就是向量的長度。長度為0的向量叫做零向量,記作長度等於1個單位的向量,叫做單位向量。箭頭所指的方向表示向量的方向。
代數規則
1、反交換律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、與標量乘法相容:(ra)×b=a×(rb)=r(a×b)。
4、不滿足結合律,但滿足雅可比恆等式:a×(b×c)+b×(c×a)+c×(a×b)=0。