首頁>Club>
14
回覆列表
  • 1 # 單純山丘2

    ∫ cos⁶x dx

    = (1/8)∫ (1 + 3cos2x + 3cos²2x + cos³2x) dx

    = (1/8)∫ dx + (3/8)∫ cos2x dx + (3/8)∫ cos²2x dx + (1/8)∫ cos²2x cos2x dx

    = x/8 + (3/8)(1/2)sin2x + (3/8)(1/2)∫ (1 + cos4x) dx + (1/8)(1/2)∫ cos²2x dsin2x

    = x/8 + (3/16)sin2x + (3/16)(x + 1/4 · sin4x) + (1/16)∫ (1 - sin²2x) dsin2x

    = x/8 + (3/16)sin2x + 3x/16 + (3/64)sin4x + (1/16)[sin2x - (sin³2x)/3] + C

    = 5x/16 + (1/4)sin2x + (3/64)sin4x - (1/48)sin³2x + C

  • 2 # 大寶8211

    即求(cost)^5的不定積分.(cost)^5dt

    =(cost)^4dsint

    =[(cost)^2 ]^2dsint

    =[1-(sint)^2]^2dsint

    =[1-2sin^2t+(sint)^4]dsint,

    可計算其原函式為

    sint-2/3(sint)^3+1/5(sint)^5+C

  • 中秋節和大豐收的關聯?
  • b2科目一罰款題技巧?