兩條直線斜率分別是l1:y=k1x+b1,l2:y=k2x+b2,並且k1k2=-1,k1<0,k2>0
與x軸正半軸的夾角θ1有tanθ1=k1<0,θ1∈(π/2,π)
l2與x軸正半軸的夾角θ2有tanθ2=k2>0,θ2∈(0,π/2)
θ1-θ2∈(0,π)
tanθ1tanθ2=-1
tan(θ1-θ2)=(tanθ1-tanθ2)/(1+tanθ1tanθ2)=∞
θ1-θ2=π/2
P(x,y)A(a,b),B(c,d)分別在l1,l2上且都不是P點
[PA]=(a-x,b-y)
[PB]=(c-x,d-y)
[PA].[PB]=(a-x)(c-x)+(b-y)(d-y)
由於k1=(b-y)/(a-x);k2=(d-y)/(c-x)
k1k2=(b-y)(d-y)/(a-x)(c-x)=-1
(b-y)(d-y)=(a-x)(c-x)
因而[PA].[PB]=0
兩條直線斜率分別是l1:y=k1x+b1,l2:y=k2x+b2,並且k1k2=-1,k1<0,k2>0
與x軸正半軸的夾角θ1有tanθ1=k1<0,θ1∈(π/2,π)
l2與x軸正半軸的夾角θ2有tanθ2=k2>0,θ2∈(0,π/2)
θ1-θ2∈(0,π)
tanθ1tanθ2=-1
tan(θ1-θ2)=(tanθ1-tanθ2)/(1+tanθ1tanθ2)=∞
θ1-θ2=π/2
P(x,y)A(a,b),B(c,d)分別在l1,l2上且都不是P點
[PA]=(a-x,b-y)
[PB]=(c-x,d-y)
[PA].[PB]=(a-x)(c-x)+(b-y)(d-y)
由於k1=(b-y)/(a-x);k2=(d-y)/(c-x)
k1k2=(b-y)(d-y)/(a-x)(c-x)=-1
(b-y)(d-y)=(a-x)(c-x)
因而[PA].[PB]=0