ax²+bx+c(a≠0)且a<0時,有最大值,(4ac-b^2)/4a。
對於一元二次函式y=ax²+bx+c(a≠0)來說:
當 x=-b/2a 時,有最值;且最值公式為:(4ac-b^2)/4a
當a>0時, 為最小值, 當a<0時, 為最大值。
二次函式,一次項係數b和二次項係數a共同決定對稱軸的位置。
當a>0,與b同號時(即ab>0),對稱軸在y軸左; 因為對稱軸在左邊則對稱軸小於0,也就是- b/2a<0,所以 b/2a要大於0,所以a、b要同號。
當a>0,與b異號時(即ab<0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大於0,也就是- b/2a>0, 所以b/2a要小於0,所以a、b要異號。
可簡單記憶為左同右異,即當對稱軸在y軸左時,a與b同號(即a>0,b>0或a<0,b<0);當對稱軸在y軸右時,a與b異號(即a0或a>0,b<0)(ab<0)。
事實上,b有其自身的幾何意義:二次函式圖象與y軸的交點處的該二次函式影象切線的函式解析式(一次函式)的斜率k的值。可透過對二次函式求導得到。
y=ax^2+bx+c =a(x+b/2a)^2+(4ac-b^2)/(4a) 所以最大值=(4ac-b^2)/(4a)
ax²+bx+c(a≠0)且a<0時,有最大值,(4ac-b^2)/4a。
對於一元二次函式y=ax²+bx+c(a≠0)來說:
當 x=-b/2a 時,有最值;且最值公式為:(4ac-b^2)/4a
當a>0時, 為最小值, 當a<0時, 為最大值。
二次函式,一次項係數b和二次項係數a共同決定對稱軸的位置。
當a>0,與b同號時(即ab>0),對稱軸在y軸左; 因為對稱軸在左邊則對稱軸小於0,也就是- b/2a<0,所以 b/2a要大於0,所以a、b要同號。
當a>0,與b異號時(即ab<0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大於0,也就是- b/2a>0, 所以b/2a要小於0,所以a、b要異號。
可簡單記憶為左同右異,即當對稱軸在y軸左時,a與b同號(即a>0,b>0或a<0,b<0);當對稱軸在y軸右時,a與b異號(即a0或a>0,b<0)(ab<0)。
事實上,b有其自身的幾何意義:二次函式圖象與y軸的交點處的該二次函式影象切線的函式解析式(一次函式)的斜率k的值。可透過對二次函式求導得到。