-
1 # 梅果酒香
-
2 # 流浪藏地的行者
有種方法叫做Tabular Method,能快捷解出xⁿe^(ax),xⁿsinx,xⁿcosx等這型別的積分
前提是其中一個的導數要是有限形式,無限求導會變為0,而積分則是無限迴圈的
∫ x⁴sinx dx
設ƒ(x) = x⁴,I(x) = sinx
以下將不斷分別對ƒ(x)求導,和對I(x)求積分,直到求導結果是0為止。
ƒ(x) = x⁴,I(1) = sinx
ƒ'(x) = 4x³,I(2) = - cosx,+
ƒ''(x) = 12x²,I(3) = - sinx,-
ƒ'''(x) = 24x,I(4) = cosx,+
ƒ⁴(x) = 24,I(5) = sinx,-
ƒ⁵(x) = 0,I(6) = - cosx,+
於是交叉相乘:
(x⁴)(- cosx) - (4x³)(- sinx) + (12x²)(cosx) - (24x)(sinx) + (24)(- cosx)
= - x⁴cosx + 4x³sinx + 12x²cosx - 24xsinx - 24cosx
於是∫ x⁴sinx dx = - x⁴cosx + 4x³sinx + 12x²cosx - 24xsinx - 24cosx + C
同樣地:
∫ x⁴cosx dx
ƒ(x) = x⁴,I(1) = cosx
ƒ'(x) = 4x³,I(2) = sinx,+
ƒ''(x) = 12x²,I(3) = - cosx,-
ƒ'''(x) = 24x,I(4) = - sinx,+
ƒ⁴(x) = 24,I(5) = cosx,-
ƒ⁵(x) = 0,I(6) = sinx,+
(x⁴)(sinx) - (4x³)(- cosx) + (12x²)(- sinx) - (24x)(cosx) + (24)(sinx)
= x⁴sinx + 4x³cosx - 12x²sinx - 24xcosx + 24sinx
於是∫ x⁴cosx dx = x⁴sinx + 4x³cosx - 12x²sinx - 24xcosx + 24sinx + C
這種方法就是積分中的速解法,是分部積分法的特殊形式。
回覆列表
∫x^4*sin(x)dx
=-∫x^4dcos(x)
=-cos(x)x^4+∫cos(x)dx^4
=-cos(x)x^4+∫4x³dsin(x)
=-cos(x)x^4+4x³sin(x)-∫sin(x)d(4x³)
=-cos(x)x^4+4x³sin(x)+∫12x²dcos(x)
=-cos(x)x^4+4x³sin(x)+12x²cos(x)-∫cos(x)d(12x²)
=-cos(x)x^4+4x³sin(x)+12x²cos(x)-∫24xdsin(x)
=-cos(x)x^4+4x³sin(x)+12x²cos(x)-24xsin(x)
+24∫sin(x)dx
=-cos(x)x^4+4x³sin(x)+12x²cos(x)-24xsin(x)
-24cos(x)+C
=4x(x²-6)sin(x)-(x^4-12x²+24)cos(x)+C