回覆列表
-
1 # s1985516s
-
2 # 83823堃
arctanx的導數為1/(1+x²)
解:令y=arctanx,則x=tany。
對x=tany這個方程“=”的兩邊同時對x求導,則
(x)'=(tany)'
1=sec²y*(y)',則
(y)'=1/sec²y
又tany=x,則sec²y=1+tan²y=1+x²
得,(y)'=1/(1+x²)
即arctanx的導數為1/(1+x²)。
1、導數的四則運算(u與v都是關於x的函式)
(1)(u±v)'=u'±v'
(2)(u*v)'=u'*v+u*v'
(3)(u/v)'=(u'*v-u*v')/v²
2、導數的基本公式
C'=0(C為常數)、(x^n)'=nx^(n-1)、(sinx)'=cosx、(cosx)'=-sinx、(tanx)'=sec²x、(secx)'=tanxsecx
3、函式可導的條件:
如果一個函式的定義域為全體實數,即函式在其上都有定義。函式在定義域中一點可導需要一定的條件:函式在該點的左右導數存在且相等,不能證明這點導數存在。只有左右導數存在且相等,並且在該點連續,才能證明該點可導。
可導的函式一定連續;連續的函式不一定可導,不連續的函式一定不可導arctanx的導數是1/1+x²,設y=arctanx,則x=tany,因為arctanx′=1/tany′,且tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos²y=1/cos²y,則arctanx′=cos²y=cos²y/sin²y+cos²...
y = arctan(x) y = 1/(1+(x)) * (x) = 1/(1+x) * 2x = 2x/(1+x)
若是指y=x·arctan(x^2)
則有y =arctanx^2 +x·2x/(1+x^4) 擴充套件資料
常用導數公式:
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna,y=e^x y'=e^x
4.y=logax y'=logae/x,y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2