首頁>Club>
8
回覆列表
  • 1 # 夏日甜心巧克力派

    :在數學分析中,與收斂(convergence)相對的概念就是發散(divergence)。發散級數(英語:Divergent Series)指(按柯西意義下)不收斂的級數。如級數

    ,也就是說該級數的部分和序列沒有一個有窮極限。

    如果一個級數是收斂的,這個級數的項一定會趨於零。因此,任何一個項不趨於零的級數都是發散的。不過,收斂是比這更強的要求:不是每個項趨於零的級數都收斂。其中一個反例是調和級數

    調和級數的發散性被中世紀數學家奧里斯姆所證明。

    收斂級數對映到它的和的函式是線性的,從而根據哈恩-巴拿赫定理可以推出,這個函式能擴張成可和任意部分和有界的級數的可和法,這個事實一般並不怎麼有用,因為這樣的擴張許多都是互不相容的,並且也由於這種運算元的存在性證明訴諸於選擇公理或它的等價形式,例如佐恩引理,所以它們還都是非構造的。

    發散級數這一分支,作為分析學的領域,本質上關心的是明確而且自然的技巧,例如阿貝爾可和法、切薩羅可和法、波萊爾可和法以及相關物件。維納陶伯型定理的出現標誌著這一分支步入了新的階段,它引出了傅立葉分析中巴拿赫代數與可和法間出乎意料的聯絡。

    發散級數的求和作為數值技巧也與插值法和序列變換相關,這類技巧的例子有:帕德近似、Levin類序列變換以及與量子力學中高階微擾論的重整化技巧相關的依序對映。

    收斂數列

    令{

    }為一個數列,且A為一個固定的實數,如果對於任意給出的b>0,存在一個正整數N,使得對於任意n>N,有|

    -A|<b恆成立,就稱數列{

    }收斂於A(極限為A),即數列{

    }為收斂數列。

    函式收斂

    定義方式與數列收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

    收斂的定義方式很好的體現了數學分析的精神實質。

    如果給定一個定義在區間i上的函式列,u1(x), u2(x) ,u3(x)......至un(x)....... 則由這函式列構成的表示式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴稱為定義在區間i上的(函式項)無窮級數,簡稱(函式項)級數

    對於每一個確定的值X0∈I,函式項級數 ⑴ 成為常數項級數u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 這個級數可能收斂也可能發散。如果級數(2)發散,就稱點x0是函式項級數(1)的發散點。

    函式項級數(1)的收斂點的全體稱為他的收斂域 ,發散點的全體稱為他的發散域 對應於收斂域內任意一個數x,函式項級數稱為一收斂的常數項 級數 ,因而有一確定的和s。

    這樣,在收斂域上 ,函式項級數的和是x的函式S(x),通常稱s(x)為函式項級數的和函式,這函式的定義域就是級數的收斂域,並寫成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函式項級數 ⑴ 的前n項部分和 記作Sn(x),則在收斂域上有lim n→∞Sn(x)=S(x)

    記rn(x)=S(x)-Sn(x),rn(x)叫作函式級數項的餘項 (當然,只有x在收斂域上rn(x)才有意義,並有lim n→∞rn (x)=0

    1、設數列{Xn},如果存在常數a,對於任意給定的正數q(無論多小),總存在正整數N,使得n>N時,恆有|Xn-a|<q成立,就稱數列{Xn}收斂於a(極限為a),即數列{Xn}為收斂。

    2、求數列的極限,如果數列項數n趨於無窮時,數列的極限能一直趨近於實數a,那麼這個數列就是收斂的;如果找不到實數a,這個數列就是發散的。看n趨向無窮大時,Xn是否趨向一個常數,可是有時Xn比較複雜,並不好觀察。這種是最常用的判別法是單調有界既收斂。

    3、加減的時候,把高階的無窮小直接捨去如 1 + 1/n,用1來代替乘除的時候,用比較簡單的等價無窮小來代替原來複雜的無窮小來如 1/n * sin(1/n) 用1/n^2 來代替

    4、收斂數列的極限是唯一的,且該數列一定有界,還有保號性,與子數列的關係一致。不符合以上任何一個條件的數列是發散數列。另外還有達朗貝爾收斂準則,柯西收斂準則,根式判斂法等判斷收斂性。

  • 中秋節和大豐收的關聯?
  • 古埃及十大恐怖秘密?