1、 原式=(300-15/16)x1/15+(140-7/8)x1/7+(60-3/4)x1/3
=20-1/16+20-1/8+20-1/4
=60-(1/16+1/8+1/4)
=60-7/16(通分)
=59又9/16 2、1+1/2+1/3+1/4)×(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)×(1/2+1/3+1/4)=? 解法:令1/2+1/3+1/4=a, 1/5=b
原式=(1+a) ×(a+b)-(1+a+b)×a =a+a^2+b+ab-a-a^2-ab =b=1/5 . =5分之1 3、1+1/3+1/3^2+1/3^3+……+1/3^100 令原式=A 則3A=3+1+1/3+1/3^2+1/3^3+……+1/3^99=3+A-1/3^100 解出方程: A=3/2-(2×3^100)^(-1) 4、1/(1×2)+1/(2×3)+1/(3×4)+…+1/(99×100) 解題方法:每個加號前或後面的數字變成兩個數的減數再相加. 1/(1×2)=1-1/2 1/(2×3)=1/2-1/3 1/(3×4)=1/3-1/4 …… 1/(99×100)=1/99-1/100 5、1/(1×3)+1/(3×5)+1/(5×7)+…+1/(99×101) 解題方法:將每個加號前或後面的數字提取同一係數後乘以兩個數的減數再相加. 1/(1×3)=(1/2)×(1-1/3) 1/(3×5)= (1/2)×(1/3-1/5) 1/(5×7)= (1/2)×(1/5-1/7) …… 1/(99×101)= (1/2)×(1/99-1/101)6、1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+99/100先轉換分數,然後逐項相加:5/6=1-(1/2-1/3)=1-1/2+1/311/12=1-(1/3-1/4)=1-1/3+1/419/20=1-(1/4-1/5)=1-1/4+1/529/30=1-(1/5-1/6)= 1-1/5+1/641/42=1-(1/6-1/7)=1-1/6+1/755/56=1-(1/7-1/8)=1-1/7+1/871/72=1-(1/8-1/9)= 1-1/8+1/999/100=1-1/100 7、1/(99×98×97)+1/(99×97×96)+1/(99×96×95)+…+1/(99×2×1) 提取1/99公因式,再拆分分數,將每個加號前或後面的數字變成兩個數的減數再相加. 原式=(1/99)×[(1/97-1/98)+(1/96-1/97)+(1/95-1/96)+……+(1-1/2)] =(1/99)×(1-1/98) =(1/99)×(97/98) =97/[(100-1)×98] =97/(9800-98) =97/9702 8、1×2/2+2×2/3+3×2/4+4×2/5+5×2/6+6×2/7+7×2/8+8×2/9+9×2/10 =2×(1/2+2/3+3/4+4/5+5/6+6/7+7/8+8/9+9/10) =2×[(1-1/2)+(1-1/3)+(1-1/4)+…+(1-1/10)] =2×[9-(1/2+1/3+1/4+……+1/10)] =2×{9-[(1/2+1/3+1/6)+ (1/4+1/8)+(1/5+1/10)+1/7+1/9]} =2×[9-(1+3/8+3/10+1/7+1/9)] 分數分母化成2×4×5×7×9=2520進行通分 =2×[8-1/2520×(3×5×7×9+3×4×7×9+2×4×5×9+2×4×5×7) =2×(8-2341/2520) =2×(7+179/2520) =14+179/1260 =14又179/1260 解題思路: 將1變成分數放在最後面.第一個等式後括號裡的每8個數分成一組,共能分248組,另外餘下3個數,不參加分組.觀察每組,加進16的和都是0.新增248個16進248組. 1+1/1992×(1+2+3+4-5-6-7-8+9+10+11+12-13-14-15-16+17+18+19+20+… +1979+1980-1981-1982-1983-1984+1985+1986) =1/1992×(1+2+3+4-5-6-7-8+9+10+11+12-13-14-15-16+17+18+19+20+… +1979+1980-1981-1982-1983-1984+1985+1986+1992) =1/1992×[(16+1+2+3+4-5-6-7-8)+(16+9+10+11+12-13-14-15-16) +(16+17+18+19+20-21-22-23-24)+… +(16+1977+1978+1979+1980-1981-1982-1983-1984)+1985+1986+1992-248×16] =1/1992×(1985+1986+1992-3968) = 1995/1992 =1又1/664 =1+[(1+2) ×2/2]^(-1)+[(1+3) ×3/2] ^(-1) +[(1+4)×4/2]^(-1) +…+[(1+100) ×100/2]^(-1) =1+2×[(1/2)×(1/3)+ (1/3) × (1/4)+ (1/4) × (1/5)+ …+(1/100) × (1/101)] =1+2×(1/2-1/3+1/3-1/4+1/4-1/5+…+1/100-1/101) =1+2×(1/2-1/101) =1+1-2/101 =1又99/101
15的脫式計算是:7+5+3
=12+3
=15即可
1、 原式=(300-15/16)x1/15+(140-7/8)x1/7+(60-3/4)x1/3
=20-1/16+20-1/8+20-1/4
=60-(1/16+1/8+1/4)
=60-7/16(通分)
=59又9/16 2、1+1/2+1/3+1/4)×(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)×(1/2+1/3+1/4)=? 解法:令1/2+1/3+1/4=a, 1/5=b
原式=(1+a) ×(a+b)-(1+a+b)×a =a+a^2+b+ab-a-a^2-ab =b=1/5 . =5分之1 3、1+1/3+1/3^2+1/3^3+……+1/3^100 令原式=A 則3A=3+1+1/3+1/3^2+1/3^3+……+1/3^99=3+A-1/3^100 解出方程: A=3/2-(2×3^100)^(-1) 4、1/(1×2)+1/(2×3)+1/(3×4)+…+1/(99×100) 解題方法:每個加號前或後面的數字變成兩個數的減數再相加. 1/(1×2)=1-1/2 1/(2×3)=1/2-1/3 1/(3×4)=1/3-1/4 …… 1/(99×100)=1/99-1/100 5、1/(1×3)+1/(3×5)+1/(5×7)+…+1/(99×101) 解題方法:將每個加號前或後面的數字提取同一係數後乘以兩個數的減數再相加. 1/(1×3)=(1/2)×(1-1/3) 1/(3×5)= (1/2)×(1/3-1/5) 1/(5×7)= (1/2)×(1/5-1/7) …… 1/(99×101)= (1/2)×(1/99-1/101)6、1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+99/100先轉換分數,然後逐項相加:5/6=1-(1/2-1/3)=1-1/2+1/311/12=1-(1/3-1/4)=1-1/3+1/419/20=1-(1/4-1/5)=1-1/4+1/529/30=1-(1/5-1/6)= 1-1/5+1/641/42=1-(1/6-1/7)=1-1/6+1/755/56=1-(1/7-1/8)=1-1/7+1/871/72=1-(1/8-1/9)= 1-1/8+1/999/100=1-1/100 7、1/(99×98×97)+1/(99×97×96)+1/(99×96×95)+…+1/(99×2×1) 提取1/99公因式,再拆分分數,將每個加號前或後面的數字變成兩個數的減數再相加. 原式=(1/99)×[(1/97-1/98)+(1/96-1/97)+(1/95-1/96)+……+(1-1/2)] =(1/99)×(1-1/98) =(1/99)×(97/98) =97/[(100-1)×98] =97/(9800-98) =97/9702 8、1×2/2+2×2/3+3×2/4+4×2/5+5×2/6+6×2/7+7×2/8+8×2/9+9×2/10 =2×(1/2+2/3+3/4+4/5+5/6+6/7+7/8+8/9+9/10) =2×[(1-1/2)+(1-1/3)+(1-1/4)+…+(1-1/10)] =2×[9-(1/2+1/3+1/4+……+1/10)] =2×{9-[(1/2+1/3+1/6)+ (1/4+1/8)+(1/5+1/10)+1/7+1/9]} =2×[9-(1+3/8+3/10+1/7+1/9)] 分數分母化成2×4×5×7×9=2520進行通分 =2×[8-1/2520×(3×5×7×9+3×4×7×9+2×4×5×9+2×4×5×7) =2×(8-2341/2520) =2×(7+179/2520) =14+179/1260 =14又179/1260 解題思路: 將1變成分數放在最後面.第一個等式後括號裡的每8個數分成一組,共能分248組,另外餘下3個數,不參加分組.觀察每組,加進16的和都是0.新增248個16進248組. 1+1/1992×(1+2+3+4-5-6-7-8+9+10+11+12-13-14-15-16+17+18+19+20+… +1979+1980-1981-1982-1983-1984+1985+1986) =1/1992×(1+2+3+4-5-6-7-8+9+10+11+12-13-14-15-16+17+18+19+20+… +1979+1980-1981-1982-1983-1984+1985+1986+1992) =1/1992×[(16+1+2+3+4-5-6-7-8)+(16+9+10+11+12-13-14-15-16) +(16+17+18+19+20-21-22-23-24)+… +(16+1977+1978+1979+1980-1981-1982-1983-1984)+1985+1986+1992-248×16] =1/1992×(1985+1986+1992-3968) = 1995/1992 =1又1/664 =1+[(1+2) ×2/2]^(-1)+[(1+3) ×3/2] ^(-1) +[(1+4)×4/2]^(-1) +…+[(1+100) ×100/2]^(-1) =1+2×[(1/2)×(1/3)+ (1/3) × (1/4)+ (1/4) × (1/5)+ …+(1/100) × (1/101)] =1+2×(1/2-1/3+1/3-1/4+1/4-1/5+…+1/100-1/101) =1+2×(1/2-1/101) =1+1-2/101 =1又99/101