首頁>Club>
5
回覆列表
  • 1 # oO似曾相識

    1平行出比例定理及逆定理:

      (1)平行於三角形一邊的直線截其它兩邊(或兩邊的延長線)所得的對應線段成比例;

      (1)(3)(2)

      幾何表示式舉例:

      (1) ∵DE∥BC

      (2) ∵DE∥BC

      (3) ∵DE∥BC

      2.比例的基本性質:a:b=c:dad=bc

      3.定理:平行出相似

      平行於三角形一邊的直線和其它兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.

      幾何表示式舉例:

      ∵DE∥BC

      ADE∽ABC

      4.定理:AA出相似

      如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似.

      幾何表示式舉例:

      ∵A

      又∵AED=ACB

      ADE∽ABC

      5.定理:SAS出相似

      如果一個三角形的兩條邊與另一個

      三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似.

      幾何表示式舉例:

      ∵

      又∵A

      ADE∽ABC

      6.雙垂 出相似及射影定理:

      (1)直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似;

      (2)雙垂圖形中,兩條直角邊是它在斜邊上的射影和斜邊的比例中項,斜邊上的高是它分斜邊所成兩條線段的比例中項.

      幾何表示式舉例:

      (1) ∵ACCB

      又∵CDAB

      ACD∽CBD∽ABC

      (2) ∵ACCBCDAB

      AC2=ADAB

      BC2=BDBA

      DC2=DADB

      7.相似三角形性質:

      (1)相似三角形對應角相等,對應邊成比例;

      (2)相似三角形對應高的比,對應中線的`比,對應角平分線、周長的比都等於相似比;

      (3)相似三角形面積的比,等於相似比的平方.

      (1) ∵ABC∽EFG

      BAC=FEG

      (2) ∵ABC∽EFG

      又∵AD、EH是對應中線

      (3) ∵ABC∽EFG

      三常識:

      1.三角形中,作平行線構造相似形和已知中點構造中位線是常用輔助線.

      2.相似形有傳遞性;即:∵1∽22∽31∽3

      四、位似

      1、位似圖形:如果兩個多邊形不僅相似,而且對應頂點的連線相交於一點,且每組對應邊互相平行,那麼這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,這時的相似比又稱為位似比.

      2、掌握位似圖形概念,需注意:①位似是一種具有位置關係的相似,所以兩個圖形是位似圖形,必定是相似圖形,而相似圖形不一定是位似圖形;②兩個位似圖形的位似中心只有一個;③兩個位似圖形可能位於位似中心的兩側,也可能位於位似中心的同一側;④位似比就是相似比.利用位似圖形的定義可判斷兩個圖形是否位似.

      3、位似圖形首先是相似圖形,所以它具有相似圖形的一切性質.位似圖形是一種特殊的相似圖形,它又具有特殊的性質,位似圖形上任意一對對應點到位似中心的距離等於位似比(相似比).

      4、利用位似,可以將一個圖形放大或縮小.作圖時要注意:①首先確定位似中心,位似中心的位置可隨意選擇;②確定原圖形的關鍵點,如四邊形有四個關鍵點,即它的四個頂點;③確定位似比,根據位似比的取值,可以判斷是將一個圖形放大還是縮小;④符合要求的圖形不惟一,因為所作的圖形與所確定的位似中心的位置有關,並且同一個位似中心的兩側各有一個符合要求的圖形.

  • 中秋節和大豐收的關聯?
  • 劉強東的涉事影片能說明其實美國的監控也很多麼?