1定義與定義表示式
一般地,自變數x和因變數y之間存在如下關係:y=ax2+bx+c(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大),則稱y為x的二次函式。
2拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)。
2.拋物線有一個頂點P,座標為:P(-b/2a,(4ac-b²)/4a)。當-b/2a=0時,P在y軸上;當Δ=b²-4ac=0時,P在x軸上。
3.二次項係數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項係數b和二次項係數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。拋物線與y軸交於(0,c)。
6.拋物線與x軸交點個數:
Δ=b²-4ac>0時,拋物線與x軸有2個交點。
Δ=b²-4ac=0時,拋物線與x軸有1個交點。
Δ=b²-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b²-4ac的值的相反數,乘上虛數i,整個式子除以2a)
3二次函式頂點座標公式推導
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k
[拋物線的頂點P(h,k)]
對於二次函式y=ax^2+bx+c
其頂點座標為 (-b/2a,(4ac-b^2)/4a)
推導:
y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a
對稱軸x=-b/2a
頂點座標(-b/2a,(4ac-b^2)/4a)
4數學二次函式考點及要求
考點:函式以及函式的定義域、函式值等有關概念,函式的表示法,常值函式
考核要求:(1)透過例項認識變數、自變數、因變數,知道函式以及函式的定義域、函式值等概念
1定義與定義表示式
一般地,自變數x和因變數y之間存在如下關係:y=ax2+bx+c(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大),則稱y為x的二次函式。
2拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)。
2.拋物線有一個頂點P,座標為:P(-b/2a,(4ac-b²)/4a)。當-b/2a=0時,P在y軸上;當Δ=b²-4ac=0時,P在x軸上。
3.二次項係數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項係數b和二次項係數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。拋物線與y軸交於(0,c)。
6.拋物線與x軸交點個數:
Δ=b²-4ac>0時,拋物線與x軸有2個交點。
Δ=b²-4ac=0時,拋物線與x軸有1個交點。
Δ=b²-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b²-4ac的值的相反數,乘上虛數i,整個式子除以2a)
3二次函式頂點座標公式推導
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k
[拋物線的頂點P(h,k)]
對於二次函式y=ax^2+bx+c
其頂點座標為 (-b/2a,(4ac-b^2)/4a)
推導:
y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2) y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a
對稱軸x=-b/2a
頂點座標(-b/2a,(4ac-b^2)/4a)
4數學二次函式考點及要求
考點:函式以及函式的定義域、函式值等有關概念,函式的表示法,常值函式
考核要求:(1)透過例項認識變數、自變數、因變數,知道函式以及函式的定義域、函式值等概念