回覆列表
  • 1 # 善解人意木青子

    x^4(sinx)^3dx

    =(1/4)∫x^4(3sinx-sin3x)dx

    =(3/4)∫x^4sinxdx-(1/12)∫x^4sin3xd(3x)

    =-(3/4)∫x^4d(cosx)+(1/12)∫x^4d(cos3x)

    =-(3/4)x^4cosx+(3/4)∫cosxd(x^4)+(1/12)x^4cos3x-(1/12)∫cos3xd(x^4)

    =-(3/4)x^4cosx+(1/12)x^4cos3x+3∫x^3cosxdx-(1/3)∫x^3cos3xdx

    =(1/12)x^4cos3x-(3/4)x^4cosx+3∫x^3d(sinx)-(1/9)∫x^3d(sin3x)

    =(1/12)x^4cos3x-(3/4)x^4cosx+3x^3sinx-3∫sinxd(x^3)-(1/9)x^3sin3x

     +(1/9)∫sin3xd(x^3)

    =(1/12)x^4cos3x-(3/4)x^4cosx+3x^3sinx-(1/9)x^3sin3x-9∫x^2sinxdx

     +(1/3)∫x^2sin3xdx

    =(1/12)x^4cos3x-(3/4)x^4cosx+3x^3sinx-(1/9)x^3sin3x+9∫x^2d(cosx)

     -(1/9)∫x^2d(cos3x)

    =(1/12)x^4cos3x-(3/4)x^4cosx+3x^3sinx-(1/9)x^3sin3x+9x^2cosx-9∫cosxd(x^2)

     -(1/9)x^2cos3x+(1/9)∫cos3xd(x^2)

    =(1/12)x^4cos3x-(3/4)x^4cosx+3x^3sinx-(1/9)x^3sin3x+9x^2cosx

     -(1/9)x^2cos3x-18∫xcosxdx+(2/9)∫xcos3xdx

    =(1/12)x^4cos3x-(3/4)x^4cosx+3x^3sinx-(1/9)x^3sin3x+9x^2cosx

     -(1/9)x^2cos3x-18∫xd(sinx)+(2/27)∫xd(sin3x)

    =(1/12)x^4cos3x-(3/4)x^4cosx+3x^3sinx-(1/9)x^3sin3x+9x^2cosx

     -(1/9)x^2cos3x-18xsinx+18∫sinxdx+(2/27)xsin3x-(2/27)∫sin3xdx

    =(1/12

  • 2 # 髒話比謊話乾淨558

    已知直線y1=k1x+b1,關於已知直線y0=k0x+b0的對稱點y2的公式,

    先聯解方程求出交點座標(b0-b1)/(k1-k0),(k0b1-k1b0)/(k0-b1),

    假如k1與x軸夾角為θ1,k0為θ0,y2為θ2,顯然有θ1-θ0=θ0-θ2,有θ2=2θ0-θ1,

    設y2斜率k2,顯然tgθ1=k1,tgθ1=k1,tgθ1=k1,

    用正切公式可求得,然後代入交點座標。

  • 中秋節和大豐收的關聯?
  • 你如何看待張天愛古力娜扎徐開騁事件?