逃逸速度取決與星球的質量。如果一個星球的質量大,其引力就強,逃逸速度值就高。反之一個較輕的星球將會有較小的逃逸速度。逃逸速度還取決於物體與星球中心的距離。距離越近,逃逸速度越大。地球的逃逸速度是11.2公里/秒,太陽的逃逸速度大約為每秒一百英里。如果一個天體的質量與表面引力很大,使得逃逸速度達到甚至超過了光速,該天體就是黑洞。黑洞的逃逸速度達30萬千米/秒。一般認為宇宙沒有邊界,說宇宙中的物質逃離到別的地方去這樣的問題沒有意義。因此,說宇宙的逃逸速度也似乎沒有意義。 不過,宇宙正在膨脹,即星系都在向遠處運動(相互遠離),這就存在這樣一個問題:如果宇宙的膨脹速度足夠大,星系就會克服宇宙的總引力而永遠膨脹下去。這就好像星系在逃離一樣。這裡,膨脹速度也就等同逃離速度了。當然,如果膨脹速度不夠大,膨脹終將停止,宇宙的總引力將會使星系相互靠近,就像飛離地球的物體再掉回來一樣。 因此,這樣來理解宇宙的逃逸速度,就成了一個很有意義的問題。宇宙是永遠膨脹還是轉而收縮,取決於膨脹速度和總引力的大小。由於膨脹速度可以測定,因而就取決於宇宙的總引力,實際上就是宇宙到底有多重。 從目前物理學界的普遍看法來講,宇宙源於一個奇點——也就是黑洞。而黑洞則是連光速運動的物體也無法逃脫的。光速是連續運動的速度極限,任何作連續運動的物體都無法超越光速。所以,宇宙是不存在逃逸速度的。 某星體的逃逸速度是逃脫該星體引力束縛的最低速度。 具有逃逸速度並不代表可以逃脫引力範圍(因為引力範圍無限)。逃逸速度只是數學上的一個計算極限。 逃脫引力束縛並不代表不受引力,它只代表物體不會再因為引力而無法到達更遠的地方。引力是一個長程單向力,無論距離引力源多遠,引力都不會消失。只是因為在距引力源足夠遠時,引力影響變得極弱,足以忽略不計。所以說,引力並沒有所謂的範圍,它無時無刻都在。 綜上,逃逸速度的計算與距引力源的距離無關,只與引力源的質量大小有關。 一個質量為m的物體具有速度v,則它具有的動能為mv^2/2。假設無窮遠地方的引力勢能為零(應為物體距離地球無窮遠時,物體受到的引力勢能為零,所以這個假設是合理的),則距離地球距離為r的物體的勢能為-mar(a為該點物體的重力加速度,負號表示物體的勢能比無窮遠點的勢能小)。又因為地球對物體的引力可視為物體的重量,所以有 GmM/r^2=ma 即a=(GM)/r^2. 所以物體的勢能又可寫為-GmM/r,其中M為地球質量。設物體在地面的速度為V,地球半徑為R,則根據能量守恆定律可知,在地球表面物體動能與勢能之和等於在r處的動能與勢能之和,即 mV^2/2+(-GMm/R)=mv^2/2+(-GmM/r)。 當物體擺脫地球引力時,r可看作無窮大,引力勢能為零,則上式變為 mV^2/2-GmM/R=mv^2/2. 顯然,當v等於零時,所需的脫離速度V最小,即 V=2GM/R開根號, 又因為 GMm/R^2=mg, 所以 V=2gR開根號, 另外,由上式可見逃逸速度(第二宇宙速度)恰好等於第一宇宙速度的根號2倍。 其中g為地球表面的重力加速度,其值為9.8牛頓/千克。地球半徑R約為6370千米,從而最終得到地球的脫離速度為11.17千米。 不同天體有不同的逃逸速度,脫離速度公式也同樣適用於其他天體。
逃逸速度取決與星球的質量。如果一個星球的質量大,其引力就強,逃逸速度值就高。反之一個較輕的星球將會有較小的逃逸速度。逃逸速度還取決於物體與星球中心的距離。距離越近,逃逸速度越大。地球的逃逸速度是11.2公里/秒,太陽的逃逸速度大約為每秒一百英里。如果一個天體的質量與表面引力很大,使得逃逸速度達到甚至超過了光速,該天體就是黑洞。黑洞的逃逸速度達30萬千米/秒。一般認為宇宙沒有邊界,說宇宙中的物質逃離到別的地方去這樣的問題沒有意義。因此,說宇宙的逃逸速度也似乎沒有意義。 不過,宇宙正在膨脹,即星系都在向遠處運動(相互遠離),這就存在這樣一個問題:如果宇宙的膨脹速度足夠大,星系就會克服宇宙的總引力而永遠膨脹下去。這就好像星系在逃離一樣。這裡,膨脹速度也就等同逃離速度了。當然,如果膨脹速度不夠大,膨脹終將停止,宇宙的總引力將會使星系相互靠近,就像飛離地球的物體再掉回來一樣。 因此,這樣來理解宇宙的逃逸速度,就成了一個很有意義的問題。宇宙是永遠膨脹還是轉而收縮,取決於膨脹速度和總引力的大小。由於膨脹速度可以測定,因而就取決於宇宙的總引力,實際上就是宇宙到底有多重。 從目前物理學界的普遍看法來講,宇宙源於一個奇點——也就是黑洞。而黑洞則是連光速運動的物體也無法逃脫的。光速是連續運動的速度極限,任何作連續運動的物體都無法超越光速。所以,宇宙是不存在逃逸速度的。 某星體的逃逸速度是逃脫該星體引力束縛的最低速度。 具有逃逸速度並不代表可以逃脫引力範圍(因為引力範圍無限)。逃逸速度只是數學上的一個計算極限。 逃脫引力束縛並不代表不受引力,它只代表物體不會再因為引力而無法到達更遠的地方。引力是一個長程單向力,無論距離引力源多遠,引力都不會消失。只是因為在距引力源足夠遠時,引力影響變得極弱,足以忽略不計。所以說,引力並沒有所謂的範圍,它無時無刻都在。 綜上,逃逸速度的計算與距引力源的距離無關,只與引力源的質量大小有關。 一個質量為m的物體具有速度v,則它具有的動能為mv^2/2。假設無窮遠地方的引力勢能為零(應為物體距離地球無窮遠時,物體受到的引力勢能為零,所以這個假設是合理的),則距離地球距離為r的物體的勢能為-mar(a為該點物體的重力加速度,負號表示物體的勢能比無窮遠點的勢能小)。又因為地球對物體的引力可視為物體的重量,所以有 GmM/r^2=ma 即a=(GM)/r^2. 所以物體的勢能又可寫為-GmM/r,其中M為地球質量。設物體在地面的速度為V,地球半徑為R,則根據能量守恆定律可知,在地球表面物體動能與勢能之和等於在r處的動能與勢能之和,即 mV^2/2+(-GMm/R)=mv^2/2+(-GmM/r)。 當物體擺脫地球引力時,r可看作無窮大,引力勢能為零,則上式變為 mV^2/2-GmM/R=mv^2/2. 顯然,當v等於零時,所需的脫離速度V最小,即 V=2GM/R開根號, 又因為 GMm/R^2=mg, 所以 V=2gR開根號, 另外,由上式可見逃逸速度(第二宇宙速度)恰好等於第一宇宙速度的根號2倍。 其中g為地球表面的重力加速度,其值為9.8牛頓/千克。地球半徑R約為6370千米,從而最終得到地球的脫離速度為11.17千米。 不同天體有不同的逃逸速度,脫離速度公式也同樣適用於其他天體。