首頁>Club>
8
回覆列表
  • 1 # 使用者929568543348

    銳角三角函式公式


      sin α=∠α的對邊 / 斜邊

      cos α=∠α的鄰邊 / 斜邊

      tan α=∠α的對邊 / ∠α的鄰邊

      cot α=∠α的鄰邊 / ∠α的對邊

      倍角公式

      Sin2A=2SinA?CosA

      Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

      tan2A=(2tanA)/(1-tanA^2)

      (注:SinA^2 是sinA的平方 sin2(A) )

      三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α)

      cos3α=4cosα·cos(π/3+α)cos(π/3-α)

      tan3a = tan a · tan(π/3+a)· tan(π/3-a)

      三倍角公式推導

      sin3a

      =sin(2a+a)

      =sin2acosa+cos2asina

      輔助角公式

      Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

      sint=B/(A^2+B^2)^(1/2)

      cost=A/(A^2+B^2)^(1/2)

      tant=B/A

      Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

      降冪公式

      sin^2(α)=(1-cos(2α))/2=versin(2α)/2

      cos^2(α)=(1+cos(2α))/2=covers(2α)/2

      tan^2(α)=(1-cos(2α))/(1+cos(2α))

      推導公式

      tanα+cotα=2/sin2α

      tanα-cotα=-2cot2α

      1+cos2α=2cos^2α

      1-cos2α=2sin^2α

      1+sinα=(sinα/2+cosα/2)^2

      =2sina(1-sin2a)+(1-2sin2a)sina

      =3sina-4sin3a

      cos3a

      =cos(2a+a)

      =cos2acosa-sin2asina

      =(2cos2a-1)cosa-2(1-sin2a)cosa

      =4cos3a-3cosa

      sin3a=3sina-4sin3a

      =4sina(3/4-sin2a)

      =4sina[(√3/2)2-sin2a]

      =4sina(sin260°-sin2a)

      =4sina(sin60°+sina)(sin60°-sina)

      =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

      =4sinasin(60°+a)sin(60°-a)

      cos3a=4cos3a-3cosa

      =4cosa(cos2a-3/4)

      =4cosa[cos2a-(√3/2)2]

      =4cosa(cos2a-cos230°)

      =4cosa(cosa+cos30°)(cosa-cos30°)

      =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

      =-4cosasin(a+30°)sin(a-30°)

      =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

      =-4cosacos(60°-a)[-cos(60°+a)]

      =4cosacos(60°-a)cos(60°+a)

  • 中秋節和大豐收的關聯?
  • 小炒豬肝王剛?