是的。有界函式不一定收斂,無界函式一定發散。
一、
1.發散與收斂對於數列和函式來說,它就只是一個極限的概念,一般來說如果它們的通項的值在變數趨於無窮大時趨於某一個確定的值時這個數列或是函式就是收斂的,所以在判斷是否是收斂的就只要求它們的極限就可以了.對於證明一個數列是收斂或是發散的只要運用書上的定理就可以了。
2.對於級數來說,它也是一個極限的概念,但不同的是這個極限是對級數的部分和來說的,在判斷一個級數是否收斂只要根據書上的判別法就行了。
二、
1.收斂數列令為一個數列,且A為一個固定的實數,如果對於任意給出的b>0,存在一個正整數N,使得對於任意n>N,有|an-A|<b,則數列存在極限A,數列被稱為收斂。非收斂的數列被稱作“發散”(divergence)數列。
2.收斂函式定義方式與數列的收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

拓展資料:
收斂數列
令{
}為一個數列,且A為一個固定的實數,如果對於任意給出的b>0,存在一個正整數N,使得對於任意n>N,有|
-A|<b恆成立,就稱數列{
}收斂於A(極限為A),即數列{
}為收斂數列。
函式收斂
定義方式與數列收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收斂的定義方式很好的體現了數學分析的精神實質。
如果給定一個定義在區間i上的函式列,u1(x), u2(x) ,u3(x)......至un(x)....... 則由這函式列構成的表示式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴稱為定義在區間i上的(函式項)無窮級數。
記rn(x)=S(x)-Sn(x),rn(x)叫作函式級數項的餘項 (當然,只有x在收斂域上rn(x)才有意義,並有lim n→∞rn (x)=0
迭代演算法的斂散性
1.全域性收斂
對於任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所產生的點列收斂,即其當k→∞時,Xk的極限趨於X*,則稱Xk+1=φ(Xk)在[a,b]上收斂於X*。
2.區域性收斂
若存在X*在某鄰域R={X| |X-X*|<δ},對任何的X0∈R,由Xk+1=φ(Xk)所產生的點列收斂,則稱Xk+1=φ(Xk)在R上收斂於X*。
在數學分析中,與收斂(convergence)相對的概念就是發散(divergence)。發散級數(英語:Divergent Series)指(按柯西意義下)不收斂的級數。如級數
和
,也就是說該級數的部分和序列沒有一個有窮極限。
如果一個級數是收斂的,這個級數的項一定會趨於零。因此,任何一個項不趨於零的級數都是發散的。不過,收斂是比這更強的要求:不是每個項趨於零的級數都收斂。其中一個反例是調和級數
調和級數的發散性被中世紀數學家奧里斯姆所證明。
是的。有界函式不一定收斂,無界函式一定發散。
一、
1.發散與收斂對於數列和函式來說,它就只是一個極限的概念,一般來說如果它們的通項的值在變數趨於無窮大時趨於某一個確定的值時這個數列或是函式就是收斂的,所以在判斷是否是收斂的就只要求它們的極限就可以了.對於證明一個數列是收斂或是發散的只要運用書上的定理就可以了。
2.對於級數來說,它也是一個極限的概念,但不同的是這個極限是對級數的部分和來說的,在判斷一個級數是否收斂只要根據書上的判別法就行了。
二、
1.收斂數列令為一個數列,且A為一個固定的實數,如果對於任意給出的b>0,存在一個正整數N,使得對於任意n>N,有|an-A|<b,則數列存在極限A,數列被稱為收斂。非收斂的數列被稱作“發散”(divergence)數列。
2.收斂函式定義方式與數列的收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

拓展資料:
收斂數列
令{

}為一個數列,且A為一個固定的實數,如果對於任意給出的b>0,存在一個正整數N,使得對於任意n>N,有|

-A|<b恆成立,就稱數列{

}收斂於A(極限為A),即數列{

}為收斂數列。
函式收斂
定義方式與數列收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
收斂的定義方式很好的體現了數學分析的精神實質。
如果給定一個定義在區間i上的函式列,u1(x), u2(x) ,u3(x)......至un(x)....... 則由這函式列構成的表示式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴稱為定義在區間i上的(函式項)無窮級數。
記rn(x)=S(x)-Sn(x),rn(x)叫作函式級數項的餘項 (當然,只有x在收斂域上rn(x)才有意義,並有lim n→∞rn (x)=0
迭代演算法的斂散性
1.全域性收斂
對於任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所產生的點列收斂,即其當k→∞時,Xk的極限趨於X*,則稱Xk+1=φ(Xk)在[a,b]上收斂於X*。
2.區域性收斂
若存在X*在某鄰域R={X| |X-X*|<δ},對任何的X0∈R,由Xk+1=φ(Xk)所產生的點列收斂,則稱Xk+1=φ(Xk)在R上收斂於X*。
在數學分析中,與收斂(convergence)相對的概念就是發散(divergence)。發散級數(英語:Divergent Series)指(按柯西意義下)不收斂的級數。如級數

和

,也就是說該級數的部分和序列沒有一個有窮極限。
如果一個級數是收斂的,這個級數的項一定會趨於零。因此,任何一個項不趨於零的級數都是發散的。不過,收斂是比這更強的要求:不是每個項趨於零的級數都收斂。其中一個反例是調和級數

調和級數的發散性被中世紀數學家奧里斯姆所證明。