首頁>Club>
11
回覆列表
  • 1 # 使用者3386151209820

    只有順口溜……

    有理數的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好。【注】“大”減“小”是指絕對值的大小。

    合併同類項:合併同類項,法則不能忘,只求係數和,字母、指數不變樣。

    去、添括號法則:去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。
    恆等變換:兩個數字來相減,互換位置最常見,正負只看其指數,奇數變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

    平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

    完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

    因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。

    “代入”口決:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小—中—大)

    單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,係數進行同級(運)算,指數運算降級(進)行。

    一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合併好,再把係數來除掉,兩邊除(以)負數時,不等號改向別忘了。

    一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

    一元二次不等式、一元一次絕對值不等式的解集:大(魚)於(吃)取兩邊,小(魚)於(吃)取中間。

    分式混合運演算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然後再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。
    分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解後須驗根,原(根)留、增(根)舍別含糊。

    最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。

    特殊點座標特徵:座標平面點(x,y),橫在前來縱在後;(+,+),(-,+),(-,-)和(+,-),四個象限分前後;X軸上y為0,x為0在Y軸。

    象限角的平分線:象限角的平分線,座標特徵有特點,一、三橫縱都相等,二、四橫縱確相反。

    平行某軸的直線:平行某軸的直線,點的座標有講究,直線平行X軸,縱座標相等橫不同;直線平行於Y軸,點的橫座標仍照舊。

    對稱點座標:對稱點座標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱座標變符號。

    自變數的取值範圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

    函式影象的移動規律:若把一次函式解析式寫成y=k(x+0)+b、二次函式的解析式寫成y=a(x+h)2+k的形式,則用下面後的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。

    一次函式影象與性質口訣:一次函式是直線,影象經過仨象限;正比例函式更簡單,經過原點一直線;兩個係數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。

    二次函式影象與性質口訣:二次函式拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點座標最重要,一般式配方它就現,橫標即為對稱軸,縱標函式最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

    反比例函式影象與性質口訣:反比例函式有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函式減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。

    巧記三角函式定義:初中所學的三角函式有正弦、餘弦、正切、餘切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這麼一句話:正對魚磷(餘鄰)直刀切。正:

    正弦或正切,對:對邊即正是對;餘:餘弦或餘弦,鄰:鄰邊即餘是鄰;切是直角邊。

    三角函式的增減性:正增餘減。

    特殊三角函式值記憶:首先記住30度、45度、60度的正弦值、餘弦值的分母都是2、正切、餘切的分母都是3,分子記口訣“123,321,三九二十七”既可。

    數字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)

    平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。

    梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現;延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

    新增輔助線歌:輔助線,怎麼添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連線則成中位線;三角形中有中線,延長中線翻一番。

    圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯,圓周、圓心、弦切角,細找關係把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等於內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。

  • 中秋節和大豐收的關聯?
  • 有關王源的句子?