公式一:
設α為任意角,終邊相同的角的同一三角函式的值相等
k是整數 sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)=cscα
公式二:
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係 sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
公式三:
任意角α與 -α的三角函式值之間的關係 sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
公式四:
利用公式二和公式三可以得到π-α與α的三角函式值之間的關係 sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係 sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
公式六:
π/2±α及3π/2±α與α的三角函式值之間的關係 sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
擴充套件資料:
對於邊長為a,b和c而相應角為A,B和C的三角形,有:sinA / a = sinB / b = sinC/c
也可表示為:a/sinA=b/sinB=c/sinC=2R
變形:a=2RsinA,b=2RsinB,c=2RsinC
其中R是三角形的外接圓半徑。
它可以透過把三角形分為兩個直角三角形並使用上述正弦的定義來證明。在這個定理中出現的公共數 (sinA)/a是透過A,B和C三點的圓的直徑的倒數。
正弦定理用於在一個三角形中已知兩個角和一個邊求未知邊和角;已知兩邊及其一邊的對角求其他角和邊的問題。這是三角測量中常見情況。
三角函式正弦定理可用於求得三角形的面積:S=1/2absinC=1/2bcsinA=1/2acsinB
公式一:
設α為任意角,終邊相同的角的同一三角函式的值相等
k是整數 sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)=cscα
公式二:
設α為任意角,π+α的三角函式值與α的三角函式值之間的關係 sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
公式三:
任意角α與 -α的三角函式值之間的關係 sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
公式四:
利用公式二和公式三可以得到π-α與α的三角函式值之間的關係 sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係 sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
公式六:
π/2±α及3π/2±α與α的三角函式值之間的關係 sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
擴充套件資料:
對於邊長為a,b和c而相應角為A,B和C的三角形,有:sinA / a = sinB / b = sinC/c
也可表示為:a/sinA=b/sinB=c/sinC=2R
變形:a=2RsinA,b=2RsinB,c=2RsinC
其中R是三角形的外接圓半徑。
它可以透過把三角形分為兩個直角三角形並使用上述正弦的定義來證明。在這個定理中出現的公共數 (sinA)/a是透過A,B和C三點的圓的直徑的倒數。
正弦定理用於在一個三角形中已知兩個角和一個邊求未知邊和角;已知兩邊及其一邊的對角求其他角和邊的問題。這是三角測量中常見情況。
三角函式正弦定理可用於求得三角形的面積:S=1/2absinC=1/2bcsinA=1/2acsinB