令u = tan(x/2),cosx = (1 - u²)/(1 + u²),dx = 2du/(1 + u²)
∫ 1/(2 + cosx) * dx
= ∫ 1/[2 + (1 - u²)/(1 + u²)] * 2du/(1 + u²)
= ∫ (1 + u²)/(2 + 2u² + 1 - u²) * 2du/(1 + u²)
= 2∫ du/(u² + 3),用公式:∫ dx/(x² + a²) = (1/a)arctan(x/a) + C,可得
= (2/√3)arctan(u/√3) + C
= (2/√3)arctan[(1/√3)tan(x/2)] + C,快很多吧
另解:
∫ dx/(2 + cosx)
= ∫ dx/[2sin²(x/2) + 2cos²(x/2) + cos²(x/2) - sin²(x/2)],公式cos2x = cos²x - sin²x
= ∫ dx/[3cos²(x/2) + sin²(x/2)],分子和分母再除以cos²(x/2)
= 2∫ sec²(x/2)/[3 + tan²(x/2)] d(x/2)
= 2∫ d[tan(x/2)]/[3 + tan²(x/2)],湊sec²(x/2) d(x/2) = d[tan(x/2)]
= 2 * 1/√3 * arctan[tan(x/2)/√3] + C,公式:∫ dx/(x² + a²) = (1/a)arctan(x/a) + C
= (2/√3)arctan[(1/√3)tan(x/2)] + C
∫dx/(2+cosx)
cosx+1=2cos^2(x/2)
原式=∫dx/(2cos^2(x/2)+1)
=∫sec^(x/2)dx/(2+sec^2(x/2))
=2∫d(tg^(x/2))/(3+tg^2(x/2))
設tgx/2=t
=2∫dt/(1+(t/根號3)^2)
=2根號3∫d(t/根號3)/(1+(t/根號3)^2)
令t/根號3=tga
2根號3∫d(t/根號3)/(1+(t/根號3)^2)
=2根號3∫d(tga)/(1+(tga)^2)
=2根號3∫sec^2a/(sec^2a)da
=2根號3*a+c
a=arctg(t/根號3)
tg(x/2)=t
a=arctan(tg(x/2)/根號3))
原式=2根號(3)/3*arctan{(根號(3)/[3tan(x/2)]}
∫ sin³x/(2 + cosx) dx
= ∫ (cos²x - 1)/(2 + cosx) dcosx
= ∫ [cosx(cosx + 2 - 2) - 1]/(2 + cosx) dcosx
= ∫ [cosx(cosx + 2) - 2(cosx + 2 - 2) - 1]/(2 + cosx) dcosx
= ∫ [cosx(cosx + 2) - 2(cosx + 2) + 3]/(2 + cosx) dcosx
= ∫ [cosx - 2 + 3/(2 + cosx)] dcosx
= (1/2)cos²x - 2cosx + 3ln(2 + cosx) + c,這樣對吧?
用三角代換做,很容易的
就是用x=tan(t/2)代入,2代換成sin^2+cos^2
令u = tan(x/2),cosx = (1 - u²)/(1 + u²),dx = 2du/(1 + u²)
∫ 1/(2 + cosx) * dx
= ∫ 1/[2 + (1 - u²)/(1 + u²)] * 2du/(1 + u²)
= ∫ (1 + u²)/(2 + 2u² + 1 - u²) * 2du/(1 + u²)
= 2∫ du/(u² + 3),用公式:∫ dx/(x² + a²) = (1/a)arctan(x/a) + C,可得
= (2/√3)arctan(u/√3) + C
= (2/√3)arctan[(1/√3)tan(x/2)] + C,快很多吧
另解:
∫ dx/(2 + cosx)
= ∫ dx/[2sin²(x/2) + 2cos²(x/2) + cos²(x/2) - sin²(x/2)],公式cos2x = cos²x - sin²x
= ∫ dx/[3cos²(x/2) + sin²(x/2)],分子和分母再除以cos²(x/2)
= 2∫ sec²(x/2)/[3 + tan²(x/2)] d(x/2)
= 2∫ d[tan(x/2)]/[3 + tan²(x/2)],湊sec²(x/2) d(x/2) = d[tan(x/2)]
= 2 * 1/√3 * arctan[tan(x/2)/√3] + C,公式:∫ dx/(x² + a²) = (1/a)arctan(x/a) + C
= (2/√3)arctan[(1/√3)tan(x/2)] + C
∫dx/(2+cosx)
cosx+1=2cos^2(x/2)
原式=∫dx/(2cos^2(x/2)+1)
=∫sec^(x/2)dx/(2+sec^2(x/2))
=2∫d(tg^(x/2))/(3+tg^2(x/2))
設tgx/2=t
=2∫dt/(1+(t/根號3)^2)
=2根號3∫d(t/根號3)/(1+(t/根號3)^2)
令t/根號3=tga
2根號3∫d(t/根號3)/(1+(t/根號3)^2)
=2根號3∫d(tga)/(1+(tga)^2)
=2根號3∫sec^2a/(sec^2a)da
=2根號3*a+c
a=arctg(t/根號3)
tg(x/2)=t
a=arctan(tg(x/2)/根號3))
原式=2根號(3)/3*arctan{(根號(3)/[3tan(x/2)]}
∫ sin³x/(2 + cosx) dx
= ∫ (cos²x - 1)/(2 + cosx) dcosx
= ∫ [cosx(cosx + 2 - 2) - 1]/(2 + cosx) dcosx
= ∫ [cosx(cosx + 2) - 2(cosx + 2 - 2) - 1]/(2 + cosx) dcosx
= ∫ [cosx(cosx + 2) - 2(cosx + 2) + 3]/(2 + cosx) dcosx
= ∫ [cosx - 2 + 3/(2 + cosx)] dcosx
= (1/2)cos²x - 2cosx + 3ln(2 + cosx) + c,這樣對吧?
用三角代換做,很容易的
就是用x=tan(t/2)代入,2代換成sin^2+cos^2