以首項加末項乘以項數除以2用來計算“1+2+3+4+5+···+(n-1)+n”的結果。這樣的演算法被稱為高斯演算法。
高斯小時候非常淘氣,一次數學課上,老師為了讓他們安靜下來,給他們列了一道很難的算式,讓他們一個小時內算出1+2+3+4+5+6+……+100的得數。全班只有高斯用了不到20分鐘給出了答案,因為他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50個101,所以50×101就是1加到一百的得數。後來人們把這種簡便演算法稱作高斯演算法。
計算方法公式
具體的方法是:首項加末項乘以項數除以2
項數的計算方法是末項減去首項除以項差(每項之間的差)加1.
如:1+2+3+4+5+······+n,則用字母表示為:n(1+n)/2
等差數列求和公式 Sn=(a1+an)n/2 Sn=n(2a1+(n-1)d)/2; d=公差 Sn=An2+Bn; A=d/2,B=a1-(d/2)
其他公式
等差數列求和公式:
Sn=(a1+an)n/2
Sn=n(2a1+(n-1)d)/2
Sn=An2+Bn
d=公差
A=d/2
B=a1-(d/2)
以首項加末項乘以項數除以2用來計算“1+2+3+4+5+···+(n-1)+n”的結果。這樣的演算法被稱為高斯演算法。
高斯小時候非常淘氣,一次數學課上,老師為了讓他們安靜下來,給他們列了一道很難的算式,讓他們一個小時內算出1+2+3+4+5+6+……+100的得數。全班只有高斯用了不到20分鐘給出了答案,因為他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50個101,所以50×101就是1加到一百的得數。後來人們把這種簡便演算法稱作高斯演算法。
計算方法公式
具體的方法是:首項加末項乘以項數除以2
項數的計算方法是末項減去首項除以項差(每項之間的差)加1.
如:1+2+3+4+5+······+n,則用字母表示為:n(1+n)/2
等差數列求和公式 Sn=(a1+an)n/2 Sn=n(2a1+(n-1)d)/2; d=公差 Sn=An2+Bn; A=d/2,B=a1-(d/2)
其他公式
等差數列求和公式:
Sn=(a1+an)n/2
Sn=n(2a1+(n-1)d)/2
Sn=An2+Bn
d=公差
A=d/2
B=a1-(d/2)