回覆列表
-
1 # ᝰ安之若素ᝰ
-
2 # 萬聖之魔
正切與正餘弦二倍角的關係為:sin2x=2sinxcosx=2tanx/[(tanx)²+1]
cos2x=(cosx)²-(sinx)²=[1-(tanx)²]/[1+(tanx)²]
正切與正餘弦二倍角的關係為:sin2x=2sinxcosx=2tanx/[(tanx)²+1]
cos2x=(cosx)²-(sinx)²=[1-(tanx)²]/[1+(tanx)²]
正弦
: sin2α = 2cosαsinα
推導:
sin2α = sin
(α+α) = sinαcosα + cosαsinα= 2sinαcosα
餘弦
:
餘弦
有三組表示形式,三組形式等價:
1.cos2α = 2cos^2 α- 1
2.cos2α = 1 − 2sin^2 α
3.cos2α = cos^2 α − sin^2 α
推導:
cos2A = cos(A+A) = cosAcosA - sinAsinA = cos^2 A- sin^2 A = 2cos^2 A - 1=1 - 2sin^2 A
正切二
:
tan2α = 2tanα/[1 - (tanα)^2]
tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α
推導:
tan(2a) = tan(a+a) = (tan(a) + tan(a))/(1 - tan(a)*tan(a) )= 2tanα/[1 - (tanα)^2]