CPU_多媒體指令集解釋CPU依靠指令來計算和控制系統,每款CPU在設計時就規定了一系列與其硬件電路相配合的指令系統。指令的強弱也是CPU的重要指標,指令集是提高微處理器效率的最有效工具之一。從現階段的主流體系結構講,指令集可分為複雜指令集和精簡指令集兩部分,而從具體運用看,如Intel的MMX(MultiMediaExtended)、SSE、SSE2(Streaming-Singleinstructionmultipledata-Extensions2)和AMD的3DNow!等都是CPU的擴展指令集,分別增強了CPU的多媒體、圖形圖象和Internet等的處理能力。我們通常會把CPU的擴展指令集稱為"CPU的指令集"。精簡指令集的運用在最初發明計算機的數十年裡,隨著計算機功能日趨增大,性能日趨變強,內部元器件也越來越多,指令集日趨複雜,過於冗雜的指令嚴重的影響了計算機的工作效率。後來經過研究發現,在計算機中,80%程序只用到了20%的指令集,基於這一發現,RISC精簡指令集被提了出來,這是計算機系統架構的一次深刻革命。RISC體系結構的基本思路是:抓住CISC指令系統指令種類太多、指令格式不規範、尋址方式太多的缺點,通過減少指令種類、規範指令格式和簡化尋址方式,方便處理器內部的并行處理,提高VLSI器件的使用效率,從而大幅度地提高處理器的性能。RISC指令集有許多特徵,其中最重要的有:指令種類少,指令格式規範:RISC指令集通常只使用一種或少數幾種格式。指令長度單一(一般4個字節),並且在字邊界上對齊。字段位置、特別是操作碼的位置是固定的。尋址方式簡化:幾乎所有指令都使用寄存器尋址方式,尋址方式總數一般不超過5個。其他更為複雜的尋址方式,如間接尋址等則由軟件利用簡單的尋址方式來合成。大量利用寄存器間操作:RISC指令集中大多數操作都是寄存器到寄存器操作,只以簡單的Load和Store操作訪問內存。因此,每條指令中訪問的內存地址不會超過1個,訪問內存的操作不會與算術操作混在一起。簡化處理器結構:使用RISC指令集,可以大大簡化處理器的控制器和其他功能單元的設計,不必使用大量專用寄存器,特別是允許以硬件線路來實現指令操作,而不必像CISC處理器那樣使用微程序來實現指令操作。因此RISC處理器不必像CISC處理器那樣設置微程序控制存儲器,就能夠快速地直接執行指令。便於使用VLSI技術:隨著LSI和VLSI技術的發展,整個處理器(甚至多個處理器)都可以放在一個芯片上。RISC體系結構可以給設計單芯片處理器帶來很多好處,有利於提高性能,簡化VLSI芯片的設計和實現。基於VLSI技術,製造RISC處理器要比CISC處理器工作量小得多,成本也低得多。加強了處理器并行能力:RISC指令集能夠非常有效地適合於採用流水線、超流水線和超標量技術,從而實現指令級并行操作,提高處理器的性能。目前常用的處理器內部并行操作技術基本上是基於RISC體系結構發展和走向成熟的。正由於RISC體系所具有的優勢,它在高端系統得到了廣泛的應用,而CISC體系則在桌面系統中占據統治地位。而在如今,在桌面領域,RISC也不斷滲透,預計未來,RISC將要一統江湖。CPU的擴展指令集對於CPU來說,在基本功能方面,它們的差別並不太大,基本的指令集也都差不多,但是許多廠家為了提昇某一方面性能,又開發了擴展指令集,擴展指令集定義了新的數據和指令,能夠大大提高某方面數據處理能力,但必需要有軟件支持。MMX指令集MMX(MultiMediaeXtension,多媒體擴展指令集)指令集是Intel公司於1996年推出的一項多媒體指令增強技術。MMX指令集中包括有57條多媒體指令,通過這些指令可以一次處理多個數據,在處理結果超過實際處理能力的時候也能進行正常處理,這樣在軟件的配合下,就可以得到更高的性能。MMX的益處在於,當時存在的操作系統不必為此而做出任何修改便可以輕鬆地執行MMX程序。但是,問題也比較明顯,那就是MMX指令集與x87浮點運算指令不能夠同時執行,必須做密集式的交錯切換才可以正常執行,這種情況就勢必造成整個系統運行質量的下降。SSE指令集SSE(StreamingSIMDExtensions,單指令多數據流擴展)指令集是Intel在PentiumIII處理器中率先推出的。其實,早在PIII正式推出之前,Intel公司就曾經通過各種渠道公布過所謂的KNI(KatmaiNewInstruction)指令集,這個指令集也就是SSE指令集的前身,並一度被很多傳媒稱之為MMX指令集的下一個版本,即MMX2指令集。究其背景,原來"KNI"指令集是Intel公司最早為其下一代芯片命名的指令集名稱,而所謂的"MMX2"則完全是硬件評論家們和媒體憑感覺和印象對"KNI"的評價,Intel公司從未正式發布過關於MMX2的消息。而最終推出的SSE指令集也就是所謂勝出的"互聯網SSE"指令集。SSE指令集包括了70條指令,其中包含提高3D圖形運算效率的50條SIMD(單指令多數據技術)浮點運算指令、12條MMX整數運算增強指令、8條優化內存中連續數據塊傳輸指令。理論上這些指令對目前流行的圖像處理、浮點運算、3D運算、視頻處理、音頻處理等諸多多媒體應用起到全面強化的作用。SSE指令與3DNow!指令彼此互不兼容,但SSE包含了3DNow!技術的絕大部分功能,只是實現的方法不同。SSE兼容MMX指令,它可以通過SIMD和單時鐘週期并行處理多個浮點數據來有效地提高浮點運算速度。SSE2指令集SSE2(StreamingSIMDExtensions2,Intel官方稱為SIMD流技術擴展2或數據流單指令多數據擴展指令集2)指令集是Intel公司在SSE指令集的基礎上發展起來的。相比於SSE,SSE2使用了144個新增指令,擴展了MMX技術和SSE技術,這些指令提高了廣大應用程序的運行性能。隨MMX技術引進的SIMD整數指令從64位擴展到了128位,使SIMD整數類型操作的有效執行率成倍提高。雙倍精度浮點SIMD指令允許以SIMD格式同時執行兩個浮點操作,提供雙倍精度操作支持有助於加速內容創建、財務、工程和科學應用。除SSE2指令之外,最初的SSE指令也得到增強,通過支持多種數據類型(例如,雙字和四字)的算術運算,支持靈活並且動態範圍更廣的計算功能。SSE2指令可讓軟件開發員極其靈活的實施算法,並在運行諸如MPEG-2、MP3、3D圖形等之類的軟件時增強性能。Intel是從Willamette核心的Pentium4開始支持SSE2指令集的,而AMD則是從K8架構的SledgeHammer核心的Opteron開始才支持SSE2指令集的。SSE3指令集SSE3(StreamingSIMDExtensions3,Intel官方稱為SIMD流技術擴展3或數據流單指令多數據擴展指令集3)指令集是Intel公司在SSE2指令集的基礎上發展起來的。相比於SSE2,SSE3在SSE2的基礎上又增加了13個額外的SIMD指令。SSE3中13個新指令的主要目的是改進線程同步和特定應用程序領域,例如媒體和遊戲。這些新增指令強化了處理器在浮點轉換至整數、複雜算法、視頻編碼、SIMD浮點寄存器操作以及線程同步等五個方面的表現,最終達到提昇多媒體和遊戲性能的目的。Intel是從Prescott核心的Pentium4開始支持SSE3指令集的,而AMD則是從2005年下半年Troy核心的Opteron開始才支持SSE3的。但是需要注意的是,AMD所支持的SSE3與Intel的SSE3並不完全相同,主要是刪除了針對Intel超線程技術優化的部分指令。3DNow!指令集由AMD公司提出的3DNow!指令集應該說出現在SSE指令集之前,並被AMD廣泛應用於其K6-2、K6-3以及Athlon(K7)處理器上。3DNow!指令集技術其實就是21條機器碼的擴展指令集。與Intel公司的MMX技術側重於整數運算有所不同,3DNow!指令集主要針對三維建模、坐標變換和效果渲染等三維應用場合,在軟件的配合下,可以大幅度提高3D處理性能。後來在Athlon上開發了Enhanced3DNow!。這些AMD標準的SIMD指令和Intel的SSE具有相同效能。因為受到Intel在商業上以及PentiumIII成功的影響,軟件在支持SSE上比起3DNow!更為普遍。Enhanced3DNow!AMD公司繼續增加至52個指令,包含了一些SSE碼,因而在針對SSE做最佳化的軟件中能獲得更好的效能。目前最新的IntelCPU可以支持SSE、SSE2、SSE3指令集。早期的AMDCPU僅支持3DNow!指令集,隨著Intel的逐步授權,從Venice核心的Athlon64開始,AMD的CPU不僅進一步發展了3DNow!指令集,並且可以支持Inel的SSE、SSE2、SSE3指令集。不過目前業界接受比較廣泛的還是Intel的SSE系列指令集,AMD的3DNow!指令集應用比較少。轉自:http://bbs.pcpop.com/060608/164308.html
CPU_多媒體指令集解釋CPU依靠指令來計算和控制系統,每款CPU在設計時就規定了一系列與其硬件電路相配合的指令系統。指令的強弱也是CPU的重要指標,指令集是提高微處理器效率的最有效工具之一。從現階段的主流體系結構講,指令集可分為複雜指令集和精簡指令集兩部分,而從具體運用看,如Intel的MMX(MultiMediaExtended)、SSE、SSE2(Streaming-Singleinstructionmultipledata-Extensions2)和AMD的3DNow!等都是CPU的擴展指令集,分別增強了CPU的多媒體、圖形圖象和Internet等的處理能力。我們通常會把CPU的擴展指令集稱為"CPU的指令集"。精簡指令集的運用在最初發明計算機的數十年裡,隨著計算機功能日趨增大,性能日趨變強,內部元器件也越來越多,指令集日趨複雜,過於冗雜的指令嚴重的影響了計算機的工作效率。後來經過研究發現,在計算機中,80%程序只用到了20%的指令集,基於這一發現,RISC精簡指令集被提了出來,這是計算機系統架構的一次深刻革命。RISC體系結構的基本思路是:抓住CISC指令系統指令種類太多、指令格式不規範、尋址方式太多的缺點,通過減少指令種類、規範指令格式和簡化尋址方式,方便處理器內部的并行處理,提高VLSI器件的使用效率,從而大幅度地提高處理器的性能。RISC指令集有許多特徵,其中最重要的有:指令種類少,指令格式規範:RISC指令集通常只使用一種或少數幾種格式。指令長度單一(一般4個字節),並且在字邊界上對齊。字段位置、特別是操作碼的位置是固定的。尋址方式簡化:幾乎所有指令都使用寄存器尋址方式,尋址方式總數一般不超過5個。其他更為複雜的尋址方式,如間接尋址等則由軟件利用簡單的尋址方式來合成。大量利用寄存器間操作:RISC指令集中大多數操作都是寄存器到寄存器操作,只以簡單的Load和Store操作訪問內存。因此,每條指令中訪問的內存地址不會超過1個,訪問內存的操作不會與算術操作混在一起。簡化處理器結構:使用RISC指令集,可以大大簡化處理器的控制器和其他功能單元的設計,不必使用大量專用寄存器,特別是允許以硬件線路來實現指令操作,而不必像CISC處理器那樣使用微程序來實現指令操作。因此RISC處理器不必像CISC處理器那樣設置微程序控制存儲器,就能夠快速地直接執行指令。便於使用VLSI技術:隨著LSI和VLSI技術的發展,整個處理器(甚至多個處理器)都可以放在一個芯片上。RISC體系結構可以給設計單芯片處理器帶來很多好處,有利於提高性能,簡化VLSI芯片的設計和實現。基於VLSI技術,製造RISC處理器要比CISC處理器工作量小得多,成本也低得多。加強了處理器并行能力:RISC指令集能夠非常有效地適合於採用流水線、超流水線和超標量技術,從而實現指令級并行操作,提高處理器的性能。目前常用的處理器內部并行操作技術基本上是基於RISC體系結構發展和走向成熟的。正由於RISC體系所具有的優勢,它在高端系統得到了廣泛的應用,而CISC體系則在桌面系統中占據統治地位。而在如今,在桌面領域,RISC也不斷滲透,預計未來,RISC將要一統江湖。CPU的擴展指令集對於CPU來說,在基本功能方面,它們的差別並不太大,基本的指令集也都差不多,但是許多廠家為了提昇某一方面性能,又開發了擴展指令集,擴展指令集定義了新的數據和指令,能夠大大提高某方面數據處理能力,但必需要有軟件支持。MMX指令集MMX(MultiMediaeXtension,多媒體擴展指令集)指令集是Intel公司於1996年推出的一項多媒體指令增強技術。MMX指令集中包括有57條多媒體指令,通過這些指令可以一次處理多個數據,在處理結果超過實際處理能力的時候也能進行正常處理,這樣在軟件的配合下,就可以得到更高的性能。MMX的益處在於,當時存在的操作系統不必為此而做出任何修改便可以輕鬆地執行MMX程序。但是,問題也比較明顯,那就是MMX指令集與x87浮點運算指令不能夠同時執行,必須做密集式的交錯切換才可以正常執行,這種情況就勢必造成整個系統運行質量的下降。SSE指令集SSE(StreamingSIMDExtensions,單指令多數據流擴展)指令集是Intel在PentiumIII處理器中率先推出的。其實,早在PIII正式推出之前,Intel公司就曾經通過各種渠道公布過所謂的KNI(KatmaiNewInstruction)指令集,這個指令集也就是SSE指令集的前身,並一度被很多傳媒稱之為MMX指令集的下一個版本,即MMX2指令集。究其背景,原來"KNI"指令集是Intel公司最早為其下一代芯片命名的指令集名稱,而所謂的"MMX2"則完全是硬件評論家們和媒體憑感覺和印象對"KNI"的評價,Intel公司從未正式發布過關於MMX2的消息。而最終推出的SSE指令集也就是所謂勝出的"互聯網SSE"指令集。SSE指令集包括了70條指令,其中包含提高3D圖形運算效率的50條SIMD(單指令多數據技術)浮點運算指令、12條MMX整數運算增強指令、8條優化內存中連續數據塊傳輸指令。理論上這些指令對目前流行的圖像處理、浮點運算、3D運算、視頻處理、音頻處理等諸多多媒體應用起到全面強化的作用。SSE指令與3DNow!指令彼此互不兼容,但SSE包含了3DNow!技術的絕大部分功能,只是實現的方法不同。SSE兼容MMX指令,它可以通過SIMD和單時鐘週期并行處理多個浮點數據來有效地提高浮點運算速度。SSE2指令集SSE2(StreamingSIMDExtensions2,Intel官方稱為SIMD流技術擴展2或數據流單指令多數據擴展指令集2)指令集是Intel公司在SSE指令集的基礎上發展起來的。相比於SSE,SSE2使用了144個新增指令,擴展了MMX技術和SSE技術,這些指令提高了廣大應用程序的運行性能。隨MMX技術引進的SIMD整數指令從64位擴展到了128位,使SIMD整數類型操作的有效執行率成倍提高。雙倍精度浮點SIMD指令允許以SIMD格式同時執行兩個浮點操作,提供雙倍精度操作支持有助於加速內容創建、財務、工程和科學應用。除SSE2指令之外,最初的SSE指令也得到增強,通過支持多種數據類型(例如,雙字和四字)的算術運算,支持靈活並且動態範圍更廣的計算功能。SSE2指令可讓軟件開發員極其靈活的實施算法,並在運行諸如MPEG-2、MP3、3D圖形等之類的軟件時增強性能。Intel是從Willamette核心的Pentium4開始支持SSE2指令集的,而AMD則是從K8架構的SledgeHammer核心的Opteron開始才支持SSE2指令集的。SSE3指令集SSE3(StreamingSIMDExtensions3,Intel官方稱為SIMD流技術擴展3或數據流單指令多數據擴展指令集3)指令集是Intel公司在SSE2指令集的基礎上發展起來的。相比於SSE2,SSE3在SSE2的基礎上又增加了13個額外的SIMD指令。SSE3中13個新指令的主要目的是改進線程同步和特定應用程序領域,例如媒體和遊戲。這些新增指令強化了處理器在浮點轉換至整數、複雜算法、視頻編碼、SIMD浮點寄存器操作以及線程同步等五個方面的表現,最終達到提昇多媒體和遊戲性能的目的。Intel是從Prescott核心的Pentium4開始支持SSE3指令集的,而AMD則是從2005年下半年Troy核心的Opteron開始才支持SSE3的。但是需要注意的是,AMD所支持的SSE3與Intel的SSE3並不完全相同,主要是刪除了針對Intel超線程技術優化的部分指令。3DNow!指令集由AMD公司提出的3DNow!指令集應該說出現在SSE指令集之前,並被AMD廣泛應用於其K6-2、K6-3以及Athlon(K7)處理器上。3DNow!指令集技術其實就是21條機器碼的擴展指令集。與Intel公司的MMX技術側重於整數運算有所不同,3DNow!指令集主要針對三維建模、坐標變換和效果渲染等三維應用場合,在軟件的配合下,可以大幅度提高3D處理性能。後來在Athlon上開發了Enhanced3DNow!。這些AMD標準的SIMD指令和Intel的SSE具有相同效能。因為受到Intel在商業上以及PentiumIII成功的影響,軟件在支持SSE上比起3DNow!更為普遍。Enhanced3DNow!AMD公司繼續增加至52個指令,包含了一些SSE碼,因而在針對SSE做最佳化的軟件中能獲得更好的效能。目前最新的IntelCPU可以支持SSE、SSE2、SSE3指令集。早期的AMDCPU僅支持3DNow!指令集,隨著Intel的逐步授權,從Venice核心的Athlon64開始,AMD的CPU不僅進一步發展了3DNow!指令集,並且可以支持Inel的SSE、SSE2、SSE3指令集。不過目前業界接受比較廣泛的還是Intel的SSE系列指令集,AMD的3DNow!指令集應用比較少。轉自:http://bbs.pcpop.com/060608/164308.html