首頁>Club>
4
回覆列表
  • 1 # 用戶8561832946998

    行列式的一個重要性質,設D1=|aij|,D2=|bij|是數域P上的兩個n階行列式,則D1與D2的乘積D1D2=|cij|,其中cij=ai1b1j+ai2b2j+……+ainbnj(i,j=1,2,…,n),即乘積D1D2中的第i行、第j列的元素cij為D1的第i行元素與D2的第j列對應元素乘積的和。此相乘規則簡稱行乘列。

    行列式性質

    ①行列式A中某行(或列)用同一數k乘,其結果等於kA。

    ②行列式A等於其轉置行列式AT(AT的第i行為A的第i列)。

    ③若n階行列式|αij|中某行(或列);行列式則|αij|是兩個行列式的和,這兩個行列式的第i行(或列),一個是b1,b2,…,bn;另一個是с1,с2,…,сn;其餘各行(或列)上的元與|αij|的完全一樣。

    ④行列式A中兩行(或列)互換,其結果等於-A。⑤把行列式A的某行(或列)中各元同乘一數後加到另一行(或列)中各對應元上,結果仍然是A。

    相關規則

    乘法結合律:(AB)C=A(BC)

    乘法左分配律:(A+B)C=AC+BC

    乘法右分配律:C(A+B)=CA+CB

    對數乘的結合性k(AB ..........

  • 2 # 用戶2893793678133

    公式:A^i1=(A*)/|A|;A*代表伴隨矩陣,|A|代表矩陣行列式,A^-1代表逆矩陣。逆矩陣: 設A是數域上的一個n階方陣,若在相同數域上存在另一個n階矩陣B,使得: AB=BA=E。 則我們稱B是A的逆矩陣,而A則被稱為可逆矩陣。

  • 3 # 用戶2017517446730

    假設三階矩陣A,用A的伴隨矩陣除以A的行列式,得到的結果就是A的逆矩陣。

    具體求解過程如下:

    對於三階矩陣A:

    a11 a12 a13

    a21 a22 a23

    a31 a32 a33

    行列式:

    |A|=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31;

    伴隨矩陣:A*的各元素為

    A11 A12 A13

    A21 A22 A23

    A31 A32 A33

    A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32

    A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31

    A13 = (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31

    A21 = (-1)^3 * (a12 * a33 - a13 * a32) = -a12 * a33 + a13 * a32

    ……

    A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21

    所以得到A的伴隨矩陣:

    A11/|A| A12/|A| A13/|A|

    A21/|A| A22/|A| A23/|A|

    A31/|A| A32/|A| A33/|A|

  • 中秋節和大豐收的關聯?
  • 什麼叫網易系?