半角公式
cos(A/2)=±√((1+cosA)/2)
倍角公式
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
兩角和與差公式
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
積化和差公式
cosAcosB=[cos(A+B)+cos(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
和差化積公式
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
餘弦定理
對於任意三角形,任何一邊的平方等於其他兩邊平方的和減去這兩邊與它們夾角的餘弦的積的兩倍。
對於邊長為a、b、c而相應角為A、B、C的三角形則有:
①a²=b²+c²-2bc·cosA;
②b²=a²+c²-2ac·cosB;
③c²=a²+b²-2ab·cosC。
也可表示為:
①cosC=(a²+b²-c²)/2ab;
②cosB=(a²+c²-b²)/2ac;
③cosA=(c²+b²-a²)/2bc。
半角公式
cos(A/2)=±√((1+cosA)/2)
倍角公式
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
兩角和與差公式
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
積化和差公式
cosAcosB=[cos(A+B)+cos(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
和差化積公式
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
餘弦定理
對於任意三角形,任何一邊的平方等於其他兩邊平方的和減去這兩邊與它們夾角的餘弦的積的兩倍。
對於邊長為a、b、c而相應角為A、B、C的三角形則有:
①a²=b²+c²-2bc·cosA;
②b²=a²+c²-2ac·cosB;
③c²=a²+b²-2ab·cosC。
也可表示為:
①cosC=(a²+b²-c²)/2ab;
②cosB=(a²+c²-b²)/2ac;
③cosA=(c²+b²-a²)/2bc。