回覆列表
-
1 # 憶是幸福的延續
-
2 # InvisibleWing
高等數學A(或者是高等數學1)適用於理工類教學,考查內容最為廣泛,包括狹義上的高數(即微積分)、線性代數、概率論和數理統計,有些特殊專業還包括部分數學與物理方程等更深層次的模塊內容。
-
3 # 用戶1719229777972670
高等數學通常分為高數A、高數B、高數C三類。
高數A對應理工類專業(數學專業不學高數,而是學難度更大的數學分析。)
高數B對應經管類專業
高數C對應文史類專業(語言類專業不學高數;法學專業有些學校學高數C,有些學校例如華政不學高數。)
高數B與高數A的區別總體上說就是:
1、A的難度和知識的廣度要高於B,因此A的課時比B要多
2、A主要偏向於理工科的知識結構範圍,B偏向於經濟類的計算
3、一般來說把A都搞得很好了,考B一般也會很好。
4、高數A、B的教學基本要求和歷屆考題高數老師應該會讓你們買。
5、高數A、B是混不過去的,所以上課一定要去,作業一定要自己做。混的話,不管你高中數學有多好,都會掛得很慘的。
6、如果要問高數的具體難度,可以到書店翻一下歷年的考研題,學校考試不會高於這個難度。
理工類高數包括:
一、與高數B共同內容
1. 函數、極限、連續
2. 一元函數微積分
3. 多元函數微積分
4. 級數
5. 常微分方程
二、A要求但B不要求
(1) 掌握基本初等函數的性質和圖形
(2) 掌握極限存在的二個準則,並會利用它們求極限
(3) 會用導數描述一些簡單的物理量
(4) 了解曲率,曲率半徑的概念,並會計算
(5) 了解求方程近似解的二分法和切線法
(6) 了解曲線的切線和法平面及曲面的切平面和法線的的概念,會求它們的方程
(7) 三重積分
(8) 曲線曲面積分
(9) 向量代數與空間解析幾何
你好!高等數學A包括:函數與極限;一元函數微積分學;向量代數與空間解析幾何;多元函數微積分學;無窮級數(包括傅立葉級數);微分方程等方面的基本概念、基本理論和基本運算技巧
1.掌握基本初等函數的性質和圖形
2.掌握極限存在的二個準則,並會利用它們求極限
3.會用導數描述一些簡單的物理量
4.了解曲率,曲率半徑的概念,並會計算
5.了解求方程近似解的二分法和切線法
6.了解曲線的切線和法平面及曲面的切平面和法線的的概念,會求它們的方程
7.三重積分
8.曲線曲面積分
9.向量代數與空間解析幾何
A和B共同要求部分
1.函數、極限、連續
2.一元函數微積分
3.多元函數微積分
4.級數
5.常微分方程