Y≠-X,X+Y服從正態分布。
若隨機變量X服從一個數學期望為μ、方差為σ^2的正態分布,記為N(μ,σ^2)。其概率密度函數為正態分布的期望值μ決定了其位置,其標準差σ決定了分布的幅度。當μ = 0,σ = 1時的正態分布是標準正態分布。
如果X和Y滿足:
那麼X+Y也滿足正態分布:
X-Y也滿足正態分布:
正態分布具有兩個參數μ和σ^2的連續型隨機變量的分布,第一參數μ是服從正態分布的隨機變量的均值,第二個參數σ^2是此隨機變量的方差,所以正態分布記作N(μ,σ2)。
μ是正態分布的位置參數,描述正態分布的集中趨勢位置。概率規律為取與μ鄰近的值的概率大,而取離μ越遠的值的概率越小。正態分布以X=μ為對稱軸,左右完全對稱。正態分布的期望、均數、中位數、眾數相同,均等於μ。
σ描述正態分布資料數據分布的離散程度,σ越大,數據分布越分散,σ越小,數據分布越集中。也稱為是正態分布的形狀參數,σ越大,曲線越扁平,反之,σ越小,曲線越瘦高
Y≠-X,X+Y服從正態分布。
若隨機變量X服從一個數學期望為μ、方差為σ^2的正態分布,記為N(μ,σ^2)。其概率密度函數為正態分布的期望值μ決定了其位置,其標準差σ決定了分布的幅度。當μ = 0,σ = 1時的正態分布是標準正態分布。
如果X和Y滿足:
那麼X+Y也滿足正態分布:
X-Y也滿足正態分布:
正態分布具有兩個參數μ和σ^2的連續型隨機變量的分布,第一參數μ是服從正態分布的隨機變量的均值,第二個參數σ^2是此隨機變量的方差,所以正態分布記作N(μ,σ2)。
μ是正態分布的位置參數,描述正態分布的集中趨勢位置。概率規律為取與μ鄰近的值的概率大,而取離μ越遠的值的概率越小。正態分布以X=μ為對稱軸,左右完全對稱。正態分布的期望、均數、中位數、眾數相同,均等於μ。
σ描述正態分布資料數據分布的離散程度,σ越大,數據分布越分散,σ越小,數據分布越集中。也稱為是正態分布的形狀參數,σ越大,曲線越扁平,反之,σ越小,曲線越瘦高