第一步:
ax^3+bx^2+cx+d=0
為了方便,約去a得到
x^3+kx^2+mx+n=0
令x=y-k/3 ,
代入方程(y-k/3)^3+k(y-k/3)^2+m(y-k/3)+n=0 ,
(y-k/3)^3中的y^2項係數是-k ,
k(y-k/3)^2中的y^2項係數是k ,
所以相加後y^2抵消 ,
得到y^3+py+q=0,
其中p=(-k^2/3)+m ,
q=(2(k/3)^3)-(km/3)+n。
第二步:
方程x^3+px+q=0的三個根為:
x1=[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x2=w[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w^2[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x3=w^2[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3),
其中w=(-1+i√3)/2。
×推導過程:
1、方程x^3=1的解為x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2 ;
2、方程x^3=A的解為x1=A^(1/3),x2=A^(1/3)ω,x3=A^(1/3)ω^2 ,
3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),兩邊同時除以a,可變成x^3+ax^2+bx+c=0的形式。
再令x=y-a/3,代入可消去次高項,變成x^3+px+q=0的形式。
設x=u+v是方程x^3+px+q=0的解,代入整理得:
(u+v)(3uv+p)+u^3+v^3+q=0 ①,
如果u和v滿足uv=-p/3,u^3+v^3=-q則①成立,
由一元二次方程韋達定理u^3和V^3是方程y^2+qy-(p/3)^3=0的兩個根。
解之得,y=-q/2±((q/2)^2+(p/3)^3)^(1/2),
不妨設A=-q/2-((q/2)^2+(p/3)^3)^(1/2),B=-q/2+((q/2)^2+(p/3)^3)^(1/2),
則u^3=A;v^3=B ,
u= A^(1/3)或者A^(1/3)ω或者A^(1/3)ω^2 ;
v= B^(1/3)或者B^(1/3)ω或者B^(1/3)ω^2 ,
但是考慮到uv=-p/3,所以u、v只有三組解:
u1= A^(1/3),v1= B^(1/3);
u2=A^(1/3)ω,v2=B^(1/3)ω^2;
u3=A^(1/3)ω^2,v3=B^(1/3)ω,
最後:
方程x^3+px+q=0的三個根也出來了,即
x1=u1+v1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。
第一步:
ax^3+bx^2+cx+d=0
為了方便,約去a得到
x^3+kx^2+mx+n=0
令x=y-k/3 ,
代入方程(y-k/3)^3+k(y-k/3)^2+m(y-k/3)+n=0 ,
(y-k/3)^3中的y^2項係數是-k ,
k(y-k/3)^2中的y^2項係數是k ,
所以相加後y^2抵消 ,
得到y^3+py+q=0,
其中p=(-k^2/3)+m ,
q=(2(k/3)^3)-(km/3)+n。
第二步:
方程x^3+px+q=0的三個根為:
x1=[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x2=w[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w^2[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3);
x3=w^2[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+
+w[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3),
其中w=(-1+i√3)/2。
×推導過程:
1、方程x^3=1的解為x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2 ;
2、方程x^3=A的解為x1=A^(1/3),x2=A^(1/3)ω,x3=A^(1/3)ω^2 ,
3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),兩邊同時除以a,可變成x^3+ax^2+bx+c=0的形式。
再令x=y-a/3,代入可消去次高項,變成x^3+px+q=0的形式。
設x=u+v是方程x^3+px+q=0的解,代入整理得:
(u+v)(3uv+p)+u^3+v^3+q=0 ①,
如果u和v滿足uv=-p/3,u^3+v^3=-q則①成立,
由一元二次方程韋達定理u^3和V^3是方程y^2+qy-(p/3)^3=0的兩個根。
解之得,y=-q/2±((q/2)^2+(p/3)^3)^(1/2),
不妨設A=-q/2-((q/2)^2+(p/3)^3)^(1/2),B=-q/2+((q/2)^2+(p/3)^3)^(1/2),
則u^3=A;v^3=B ,
u= A^(1/3)或者A^(1/3)ω或者A^(1/3)ω^2 ;
v= B^(1/3)或者B^(1/3)ω或者B^(1/3)ω^2 ,
但是考慮到uv=-p/3,所以u、v只有三組解:
u1= A^(1/3),v1= B^(1/3);
u2=A^(1/3)ω,v2=B^(1/3)ω^2;
u3=A^(1/3)ω^2,v3=B^(1/3)ω,
最後:
方程x^3+px+q=0的三個根也出來了,即
x1=u1+v1=A^(1/3)+B^(1/3);
x2=A^(1/3)ω+B^(1/3)ω^2;
x3=A^(1/3)ω^2+B^(1/3)ω。