首頁>健康>

摘要

薑黃是一種流行的、天然的且用於治療多種疾病傳統藥物。它的根含有不同型別的植物化學物質和礦物質,是最常用的藥用部分。這篇綜述總結了薑黃的生物化學、安全性、藥理活性(機械性)和臨床應用方面的最新知識。

薑黃素被認為是薑黃根莖中的基本成分。薑黃具有多種生物活性,包括抗炎、抗氧化、抗癌、抗誘變、抗微生物、抗肥胖、降血脂、心臟保護和神經保護作用。這些報道的藥理活性使薑黃成為進一步臨床研究的重要選擇。此外,還有關於其安全性和毒性的討論。

1.簡介

近幾十年來,薑黃是最受歡迎的功能性食品之一。薑黃(Curcuma longa L .; syn .: Curcuma domestica Valeton)屬於姜科,在亞洲熱帶地區廣泛種植。

薑黃作為香料在亞洲國家和全球其他地區的烹飪中具有悠久的歷史。全球多個地區使用薑黃及其變種成分來配製某些傳統藥物來治療人類疾病,尤其是針對中國,印度,伊朗和印度尼西亞。薑黃長期以來被用作補品。它也可用於多種疾病,包括血脂異常,胃功能紊亂,關節炎,和肝疾病。薑黃素(1,7-雙(4-羥基-3-甲氧基苯基)-1E,6E-庚二烯-3,5-二酮或二鐵醯甲烷)是衍生自薑黃的多酚。薑黃素可以從植物的根莖中獲得。薑黃呈黃色,薑黃素由三種主要的薑黃素複合物組成:薑黃素I,薑黃素II和薑黃素III。薑黃的脫水根部分最多可容納8%薑黃素。薑黃素不溶於水和乙醚,但具有分散在乙醇和其他有機溶劑中的能力。二鐵甲醯甲烷和揮發油是薑黃的其他主要活性成分。薑黃已經提到有許多生物作用,包括抗炎,抗微生物和抗腫瘤活性,抗氧化,和降血脂效能。此外,薑黃也被報道為針對各種癌症的保護劑。

圖1表示有關薑黃的某些重要機制的藥用屬性的示意圖。薑黃素(薑黃的主要活性成分)已被證明是有效的天然藥物,可抵抗炎症和氧化過程,因此有可能被用作預防癌症的保護工具。此外,薑黃油含有必需脂肪酸表示抗真菌劑,抗誘變,和抗菌活性。

圖1

代表薑黃有關某些最重要機制的醫學屬性的示意圖。NF- κ B:核因子κ B; STAT3:訊號轉導子和轉錄啟用子3;Nrf2:紅系衍生的核因子2相關因子2;SOD:超氧化物歧化酶;NFAT:活化的T細胞的核因子;FtsZ:絲狀溫度敏感突變體Z;GSH:谷胱甘肽;NOS:一氧化氮合酶;ACE:血管緊張素轉化酶。

在當前的審查中,營養價值,薑黃最常用的產品及其生化的簡要討論。此外,人們不僅試圖突出薑黃及其成分的抗癌潛力,而且試圖通過機理細節,臨床應用和薑黃的安全性來討論其他藥理活性。

2.營養成分

薑黃是碳水化合物和纖維的豐富來源。此外,它還包含一些蛋白質和脂肪,但其中不含膽固醇。此外,它還含有適量的吡哆醇,維生素C,鉀,鈣,鎂和磷,使其成為營養豐富的天然食品之一。表1顯示了薑黃的簡要營養成分。

表1 薑黃的營養成分。

主要成分

營養價值(千卡)

RDA百分比(%)

能量

354

17

碳水化合物

64.9

50

總脂肪

9.88

33

蛋白

7.83

14

膽固醇

0

0

膳食纖維

21

52.5

維生素

 吡哆醇

1.80

138

 葉酸

39

10

 煙酸

5.140

32

 核黃素

0.233

18歲

 維生素A

0

0

 維生素C

25.9

43

 維生素E

3.10

21

 維生素K

13.4

11

電解質

 鉀鹽

2525

54

 鈉

38

2.5

礦物質

 錳

7.83

340

 鈣

183

18歲

 銅

603

67

 鐵

41.42

517

 鎂

193

48

 磷

268

38

 鋅

4.35

39.5

3.主要產品

表2簡要顯示了薑黃的廣泛使用產品及其簡短描述和在日常生活中的用途。

表2 薑黃的主要產品,其描述和用途。

產品名稱

描述

用途

整個根莖(乾燥形式)

外觀:橙棕色,紅黃色或淺黃色

藥用目的

化學成分:可能含有3–15%的薑黃素和1.5至5%的精油

製備:一般在弱鹼性條件下,將手指根莖和母根莖分別煮沸約40-60分鐘。隨後應進行日晒乾燥10–15天,以將水分含量降低約10%

黃姜粉

外觀:黃色或紅黃色

用作香料,染料,藥物和膳食補充劑

化學成分:主要活性成分(即薑黃素和香精油)在加工過程中以及暴露於光線下可能會減少。必須將粉末包裝在防紫外線容器中

準備:將乾燥的手指根莖磨碎以產生其粉末

薑黃油

外觀:黃色至棕色油

用作香料,藥物和膳食補充劑

化學成分:葉中的精油通常以單萜類為主。根莖油主要含有倍半萜

製備:通過蒸汽蒸餾或超臨界CO 2提取從乾燥的根莖或葉片中提取的提取物

薑黃油性樹脂

外觀:深黃色,紅棕色粘稠液體

用作食用色素,藥物和膳食補充劑

化學成分:它們最多包含25%的精油和37-55%的薑黃素

製備:通過用有機溶劑(丙酮,二氯甲烷,1,2-二氯乙烷,甲醇,乙醇,異丙醇和輕石油(己烷))進行溶劑萃取或從超臨界CO 2萃取中,從乾燥的根莖中提取。

薑黃素

外觀:黃色至橙紅色的結晶性粉末

用作藥物和膳食補充劑

化學成分:薑黃素及其雙脫甲氧基和脫甲氧基衍生物的混合物(無固定比例)。三大類薑黃素可能佔整個比例的90%。油和樹脂可能佔少數

製備:通過從研磨的薑黃根莖中提取溶劑,然後通過結晶過程純化提取物獲得

用於萃取的有機溶劑為丙酮,二氧化碳,乙醇,乙酸乙酯,己烷,甲醇和異丙醇

4.分子成分

薑黃具有許多分子成分,每一種都具有多種生物活性。例如,至少有20種抗生素分子,其中14種具有已知的預防癌症活性。另外,它的12個分子具有抗腫瘤作用,其他12個分子具有抗炎作用。它也包含至少10種具有抗氧化特性的分子成分。總體上,共鑑定出326種薑黃生物活性。薑黃中廣泛研究的三個成分是金黃色生物鹼薑黃素,即薑黃素,雙去甲氧基薑黃素和去甲氧基薑黃素。圖2顯示薑黃素的天然代謝產物。

圖2

薑黃素的2D分子結構:(1)脫甲氧基薑黃素,(2)雙去甲氧基薑黃素,(3)薑黃素葡糖苷酸,(4)單去甲基薑黃素,(5)薑黃素單葡萄糖苷,(6)薑黃素二葡萄糖苷,(7)酮薑黃素和(8)烯丙基薑黃素(從開放化學資料庫,國家生物技術資訊中心和PubChem物質資料庫獲得和修改;https://pubchem.ncbi.nlm.nih.gov/substance)。

5.抗癌觀點

薑黃很久就用於多種疾病管理。薑黃及其成分可被視為治療癌症的多目標植物化學物質。例如,細胞凋亡,自噬和細胞週期停滯可能受到其使用的影響。有多種訊號傳導途徑是薑黃素抗癌目標。此外,薑黃可修飾微RNA網路表達的調控。應該注意的是,根據體外和體內研究,薑黃素可抑制組蛋白脫乙醯基酶的活性。

5.1。大腸癌

近年來,大腸癌(CRC)已成為令人震驚的普遍衛生保健問題。資料表明,肥胖及其相關的代謝問題與大腸癌的發生有關。已經建立了多種肥胖與CRC進展之間關係的生物學機制。胰島素抵抗和變更在胰島素樣生長因子-1(IGF-1)有助於肥胖相關結直腸癌發生。還應注意的是,脂肪組織中腫瘤壞死因子-α(TNF-α)的水平升高,這與刺激腫瘤的認可和癌變的發展有關。與肥胖有關的脂肪細胞因子比例失調和慢性炎症增加了CRC的機會。薑黃素可能是預防肥胖個體CRC的一種簡便方法。事實上,它刺激AMP活化通過減少COX-2蛋白的外觀激酶和阻遏核因子κ B(NF- κ B)對結腸的粘膜動作。薑黃素還降低了血清中的瘦素濃度,反過來增加了脂聯素水平。根據另一項研究,泊洛沙姆407可作為聚合物用於結直腸癌治療中薑黃素類藥物的結直腸藥物釋放系統的擴充套件。

薑黃進行抗腫瘤和通過NF-抑制抗癌功能κ乙建立和下調NF- κ與耐力,傳播,和癌細胞的轉移相關的B相關的基因產物。香料會檢查訊號轉導和轉錄啟用因子3(STAT3)的啟動並刺激死亡受體。此外,薑黃改善了活性氧(ROS)的產生並減少了腫瘤細胞系的擴增。此外,薑黃增加了腫瘤細胞對卡培他濱和紫杉醇(化療藥物)的敏感性。它也制服NF- κB啟用是由核因子-κB配體(RANKL)的受體啟用劑引發的,其可能與破骨細胞生成的抑制有關。因此,薑黃可以通過NF-的抑制有效地阻礙腫瘤細胞的增殖κ B和STAT3途徑。此外,薑黃可以成功應對P-糖蛋白介導的CRC多藥耐藥性的挑戰。

5.2。腎癌

長期一人腎細胞系暴露於10  μ中號薑黃素改變以劑量依賴的方式溶脹啟用的氯電流。薑黃素應用誘導凋亡在人腎細胞,並刺激與放大的音量的細胞亞群的出現在5.0-10的濃度  μ M.同樣地,50  μ中號薑黃素發起凋亡及增大結腸直腸腺癌細胞的大小。細胞週期停滯可能是暴露於薑黃素後增加細胞系大小的原因。

5.3。肝癌

Yu及其同事研究了人類肝癌SMMC-7721細胞凋亡誘導的分子機制。他們報道薑黃素通過調節bax / bcl-2誘導凋亡,從而明顯抑制SMMC-7721細胞的生長。薑黃素似乎靶向紡錘體檢查點以啟動具有更高濃度的磷酸化細胞分裂週期27(CDC27)的細胞凋亡。CDC27的磷酸化實際上是薑黃素發揮其抗癌作用的機制。薑黃素通過刺激細胞凋亡途徑並抑制細胞生長和增殖而導致細胞死亡。

5.4。骨癌

丹尼斯和他的同事通過利用天然複合物潘克拉斯汀與薑黃素的合成類似物來治療骨肉瘤,證明了汞齊治療的新天性。儘管薑黃素具有很強的抗增殖和抗炎特性,但其低水溶性限制了其用途。一項對照研究描述了使用聚乳酸-乙醇酸共聚物製備和表徵奈米薑黃素。似乎提到的奈米顆粒製劑的水溶性和抗腫瘤活性顯著提高了。

5.5。肺癌

目前,C.longa不僅在體外而且在體內都被標記為擁有抑制腫瘤的裝置。已證明薑黃素可促進多西他賽治療肺癌的腫瘤。同樣,薑黃素和多西他賽的同步給藥對正常組織以及骨髓和肝臟也有輕微毒性。

5.6。血液和其他癌症

另外,薑黃素能夠與淋巴瘤細胞一起抑制多種惡性細胞型別的生長。薑黃素與電離輻射(IR)結合治療Burkitt淋巴瘤細胞系表明,薑黃素的應用可提高淋巴瘤細胞對IR引發的細胞凋亡的敏感性,並改善細胞週期中的G2 / M期阻滯。因此,已經注意到抗凋亡的Bcl-xL細胞週期改變蛋白的下調。發現G2 / M期阻滯(由薑黃素引發)與細胞週期蛋白A,細胞週期蛋白B和細胞週期蛋白依賴性激酶1蛋白表達的明顯降低有關。另外,薑黃素誘導的細胞凋亡伴隨著Bax蛋白表達的上調和Bcl-2蛋白量的下調而導致線粒體功能障礙。因此,它導致鼻咽癌TW 076細胞中細胞色素c的釋放和caspase-9和caspase-3的順序啟用。因此,線粒體和凋亡誘導因子caspase-3依賴性途徑似乎是薑黃素對G2 / M期阻滯和細胞凋亡的基本作用。薑黃素也明顯降低p65和細胞質I的核易位κ乙α破損。薑黃素預處理會使Survivin和己糖激酶II減少。薑黃素和L-天冬醯胺酶(L-ASP)的聯合治療通過啟用半胱氨酸蛋白酶的各種成員(caspase-8和caspase-9 / 3)以及啟用I期解毒系統來啟動細胞凋亡。薑黃素在患有血液和骨髓癌的患者中與L-ASP協同作用。此外,薑黃素急劇降低耐去勢疾病和人平滑肌肉瘤細胞系繁殖和中斷通過靶向雷帕黴素途徑的AKT-哺乳動物靶標用於沉默子宮平滑肌肉瘤細胞生長。

大量的薑黃素可減少T細胞,而少量的薑黃素可增強從攜帶3LL腫瘤的小鼠中提取的T細胞。因此,擴增的CD8 + T細胞顯示出IFN- γ釋放和增殖的改善,尤其是針對3LL腫瘤細胞。所有的這些結果在腫瘤的成就抑制能力。

關於薑黃成分對包括MDA-MB-231,MCF-7和HepG2在內的人類癌細胞系的抗增殖作用以及薑黃酮對人血單核細胞的免疫調節作用的研究表明,α-薑黃酮和薑黃素可顯著抑制甲狀旁腺激素的產生。癌細胞。在應用α-松節油酮和芳族松節油酮後,已經注意到外周血單核細胞的繁殖和細胞因子的組成得到改善。

如引言中所述,薑黃素具有許多藥理特性,但其在水中的溶解度降低限制了其臨床應用。因此,將薑黃素製備到奈米載體系統中可增強其滲透到組織中的能力。例如,載有薑黃素的奈米膠囊顯著降低了腫瘤體積。

6.抗氧化和抗炎活性

近來,由於其抗氧化活性,薑黃受到了特別的關注,其通過直接清除氧自由基並通過核因子類胡蘿蔔素2相關因子2(Nrf2)啟用來刺激抗氧化反應。除了對血管內皮功能和組織及血漿的炎症狀態有利的預後外,該特徵還表明它潛在地有助於糖尿病性微血管病的治療。薑黃揮發油中存在的生物活性成分包括據報告對癌變有效的薑黃酮。先前的研究表明,薑黃具有獨特的抗氧化潛力。薑黃素去除了薑黃油脂樹脂,薑黃油脂樹脂是生產薑黃素的原料,並且含有油,樹脂和不可提取的薑黃素。在實驗室研究中,各種餾分和薑黃油表現出相當大的抗誘變和抗氧化能力。雌性Wistar大鼠的薑黃素濃度為200 mg / kg體重,當其暴露於有機磷農藥對硫磷時,可顯著降低大鼠海馬的氧化損傷。因此,它是防止農藥暴露後神經退行性損害的一種替代方法。

事實上,薑黃保持顯著抗炎效能,主要通過的Wnt / β連環蛋白,核因子-κB(NF- κ可能通過髓樣分化初級應答88和toll樣受體4的堵塞B)(/ NF- κ乙訊號和NF-的下調mRNA表達κ B-p65的),和絲裂原活化蛋白激酶途徑,並且還通過表觀遺傳調節作用和氧化還原調節。

一項系統的綜述顯示,薑黃素可以通過修飾身體活躍佇列中的幾種促炎細胞因子(例如TNF - α,IL-6和IL-8)來發揮抗炎作用。在腸炎症的體外模型中也觀察到提到的作用。除此之外,薑黃對腸上皮的保護作用對於炎症性腸病患者可能是有前途的。。

據研究,薑黃素大大降低了胰腺損傷和顯著提高PPAR的表達γ。薑黃素的應用導致細胞因子TNF- α釋放的調節,這可能是其減輕胰腺損傷的能力的可能依據。薑黃素治療可能會為患有SCI的人類破譯一種新的治療方法。

簡而言之,存在確鑿的科學證據,報告了薑黃及其成分/餾分治療以氧化和炎症為特徵的疾病的功效,因此有必要在飲食方案中使用。

7.抗菌作用

薑黃可能是對抗致命細菌感染的另一種抗菌劑。薑黃葉精油的利用顯著抑制了真菌的生長以及黃麴黴毒素B1和G1的產生。

在表沒食子兒茶素沒食子酸酯(EGCG)存在下,薑黃素對多重耐藥性鮑曼不動桿菌的抗菌活性顯著提高。EGCG和薑黃素的組合可在醫學中用於避免或控制鮑曼不動桿菌感染。

由於變形蟲的包囊使其對抗阿米巴藥物不利,因此消除卡氏棘阿米巴(棘阿米巴角膜炎和肉芽腫性阿米巴性腦炎的病因)非常複雜。研究證實了薑黃提取物對棘阿米巴囊腫複製的抑制作用。

此外,薑黃漱口水可以成功地用作機械斑塊管理措施的輔助方法,以預防斑塊和牙齦炎。應當指出,薑黃漱口水會導致總微生物數量顯著減少。

薑黃通過抑制FtsZ聚合來抑制絲狀溫度敏感突變體Z(FtsZ)(細胞骨架蛋白)的組裝,從而阻礙了枯草芽孢桿菌和大腸桿菌的生長。

應當指出,薑黃素作為薑黃的主要成分,具有廣泛的抗病毒活性。例如,針對其針對人類免疫缺陷病毒(HIV)的不同機制進行了數項研究。薑黃素已顯示抑制HIV-1整合酶。而且,這種多酚及其類似物可以抑制病毒基因的感染和複製。HIV蛋白酶和HIV相關激酶(例如酪氨酸激酶)被它們抑制。此外,薑黃素與生物醫學藥物具有協同作用。

應當指出的是,薑黃素抑制嘌呤/脫嘧啶核酸內切酶-1的氧化還原功能。因此,各種各樣的基因和途徑都受到影響。已經發現薑黃素可以抑制卡波西氏肉瘤相關的皰疹病毒複製,然後控制隨後的病理過程(例如,血管生成)。

關於薑黃生物成分的抗流感活性的研究很多。它可以通過抑制其吸附和複製來抵抗甲型流感病毒(IAV)。而且,薑黃素可以通過抑制IAV感染中區域性炎性細胞因子的產物來平衡免疫系統反應。此外,其對NF-調節作用κ在巨噬細胞乙信令。總之,它可以在IAV相關的肺損傷中起到保護和改善作用。

8.神經保護作用

據報道,植物來源的成分不僅可以提供神經保護作用,還可以管理與神經退行性疾病症狀相關的生化途徑,這些疾病包括認知障礙,能量損失/疲勞,情緒變化和焦慮症。此外,它具有神經源性潛力,似乎是通過刺激神經幹細胞的增殖和分化來實現的。具有神經保護作用的植物和它們的產品可能是一種新的治療方法來治療帕金森氏病(PD)。

阿爾茨海默氏病(AD)還包括與腦損傷和β-澱粉樣蛋白相關的病理相關的慢性炎症反應。研究表明,氧化應激和不良的蛋白質代謝及其相互作用是AD發病機制的核心。薑黃提取物可能是預防AD的潛在來源。AD患者的大腦經歷了許多改變(例如,蛋白質合成的干擾,蛋白質剝奪和不平衡的熱休克反應(HSR))。HSR負責保護細胞免受各種壓力。薑黃素的利用可能是減少與AD有關的氧化損傷和澱粉樣蛋白病理的飲食方法。因此,它可能是預防AD的有力工具。

腦缺血與代表DNA崩解的腦區中TdT介導的dUTP缺口末端標記(TUNEL)陽性細胞的擴增有關。薑黃油治療可能有助於減少一氧化氮合酶(NOS)亞型,並在腦缺血期間明顯減少凋亡細胞的數量。此外,薑黃素可降低脂多糖誘導的趨化因子CCL2 mRNA和蛋白在C6細胞中的表達。水溶性薑黃素製劑(50–200 mg / kg)縮短了平靜期,並增強了腦組織中5-羥色胺和多巴胺的水平。結果,這些薑黃素製劑可能為改變神經遞質和治療精神抑鬱症提供了新的機會。

最後,關於薑黃在顱腦外傷中的神經保護作用已有幾項研究。結果顯示該作用是通過降低氧化應激和腦水腫,BDNF水平升高,保護突觸蛋白和線粒體以及啟用小膠質細胞而實現的。而且,已經顯示它可以降低IL-6,TNF- α,IL- 1β和MCP-1並改善toll樣受體4和aquaporin-4的表達。另外,Nrf2途徑的啟用是有關此作用的最重要機制之一。

8.1。對代謝綜合徵,相關疾病和心血管疾病的影響

關於薑黃素對代謝綜合徵和相關疾病患者的作用,最近有一些系統的綜述。正如薈萃分析的結果所示,與空腹血糖,胰島素抵抗指數(即HOMA-IR),糖化血紅蛋白(即HbA1c),甘油三酸酯,瘦素,脂聯素等多種指標相比,總膽固醇,舒張壓,體重指數和體重已有顯著改善。然而,似乎其消耗與收縮壓,低密度脂蛋白膽固醇水平和臀部比率的顯著變化無關。應該注意的是,它對高密度脂蛋白膽固醇和腰圍的影響存在差異。

實際上,薑黃提取物的補充通過控制體重,脂肪量,血清脂質和肝脂質發揮抗肥胖作用。此外,蛋白激酶A途徑啟用的脂解可能是另一種可能的途徑。向糖尿病患者補充薑黃素卵磷脂製劑(劑量為1 g /天)表明腳表面面板通量減少,微血管病改善,水腫評分瞬時降低和隨後的進展在小動脈反應。

此外,高膽固醇血癥受試者體重的100-300 mg / kg劑量的薑黃提取物在血管舒張方面顯示出可觀的進步。飼餵含有薑黃提取物的飲食的受試者中,包括超氧化物歧化酶和谷胱甘肽過氧化物在內的抗氧化酶的水平也增加了。

薑黃素類化合物的分離還導致薑黃廢油性樹脂(SOT),這是報道的對某些健康有益的另一部分。富含薑黃素(17.5%)的SOT可以有效抑制血管緊張素轉化酶和低密度脂蛋白的氧化。同樣,富含薑黃素的成分可以降低高血壓和心血管疾病的風險。

包括薑黃在內的各種香料在預防和治療心血管疾病中具有不可避免的作用。調節心臟成纖維細胞的遷徙,增生和肥大途徑,肥大訊號傳導和增殖能力是其心血管保護作用的部分機制。此外,它可以在細胞外基質成分的合成和降解之間取得平衡。

薑黃用於多種心血管疾病的臨床前研究很多,例如心肌梗塞,心力衰竭,心臟肥大,動脈粥樣硬化,中風,腹主動脈瘤,藥物引起的心臟毒性,心肌病以及與糖尿病相關的心血管問題。另外,有許多關於薑黃素對心血管危險因素療效的臨床試驗。

此外,薑黃和薑黃素對天然和化學試劑引起的心血管毒性具有眾所周知的解毒作用。科學報告建議的有益作用在鏈脲黴素,氨甲喋呤,阿黴素,環孢素A,鎘,異丙腎上腺素,過氧化氫,尼古丁,柴油機排氣顆粒,叔丁基氫過氧化物,和環磷醯胺毒性。

9.安全性和毒性

在許多研究中,通過體外研究,動物研究和臨床試驗檢查了薑黃及其成分的安全性。根據對該主題的全面綜述,通過口服途徑施用薑黃和薑黃素的標準化粉末/提取物未顯示出對動物的顯著副作用或毒性。此外,細胞培養研究表明,薑黃素在正常細胞中具有抗增殖作用,並可降低細胞活力。但是,沒有關於致突變性和遺傳毒性的報道。似乎在人中口服薑黃和薑黃素是安全的,即使是非常規劑量也是如此。在小部分病例中報告有瘙癢,舌頭髮紅,心動過速和胃腸道不適(例如腸胃氣脹,腹瀉,噁心和便祕)。應當指出,關於口服薑黃素的生物利用度存在若干問題。但是,其靜脈內製劑吸收更大。因此,靜脈內薑黃素的給藥劑量應低於口服。

應當指出,薑黃素可能引起心血管藥物,抗生素,抗抑鬱藥,化學治療藥物,抗凝劑和抗組胺藥的某些藥代動力學改變。因此,應謹慎地將其與某些常規藥物同時使用。

根據動物研究,在懷孕期間口服薑黃和薑黃素應被認為是安全的。然而,有報道指出口服薑黃素約1000 mg / kg體重會導致F2代雛雞的體重增加略有下降。

關於改善薑黃生物利用度的藥物輸送技術的應用,應討論這些現代製劑的安全性。例如,使用載體或表面活性劑作為提高生物利用度的策略可能會導致產品有毒。同樣,一些無機金屬奈米顆粒(例如金薑黃素奈米顆粒)具有劇毒。

但是,大多數這些新穎的產品似乎都是安全的。固體脂質薑黃素顆粒製劑對骨肉瘤患者和健康人沒有不良影響。聚(N-異丙基丙烯醯胺)輸送系統是另一種將薑黃素經鼻輸送到大腦的新型系統,沒有毒性。薑黃素的二肽奈米顆粒也是安全的。二肽是由氨基酸α,β-脫氫苯丙氨酸和蛋氨酸合成的,它們在自然界中是安全的並且能夠分解。新的薑黃素類似物是最近在醫學中使用的另一種選擇。根據體內研究,他們沒有顯示出毒性。此外,薑黃素負載的人血清白蛋白奈米顆粒在腫瘤異種移植HCT116模型中靜脈內使用時未顯示毒性。在某些情況下,薑黃素的現代化配方似乎比傳統配方更安全。對新型靜脈注射薑黃素的研究結果顯示,薑黃素奈米混懸液組的兔子比薑黃素溶液組的小鼠出現區域性刺激和靜脈炎的風險和紅細胞溶血的減少。

10.結論

薑黃最廣泛使用的部分是其根,其中包含大量的植物化學物質,維生素和礦物質,對治癒各種人類疾病非常有益。薑黃似乎是一種通常安全的藥用植物。但是,應嚴格評估其在妊娠和哺乳期以及肝腎功能衰竭患者中的使用。許多產品是從薑黃中提取的。它的活性最高的成分是薑黃素,其次是其他重要成分,包括薑黃素類Atlantone,二甲氧基薑黃素,二芳基庚烷類,tumerone和類黃酮薑黃素(二氟甲醯甲烷)具有抗菌,消炎和抗氧化特性,可提供針對不同型別的細胞損傷的保護作用。此外,薑黃及其成分不僅提供神經保護作用,還調節帕金森氏病和阿爾茨海默氏病等神經系統疾病的病理。它也已被證明是對抗各種癌症的有效工具。此外,對其抗代謝綜合症的作用有一些研究。綜上所述,可以得出結論,在飲食方案中建議使用薑黃及其成分以對抗多種疾病。為了更好地理解和判斷其在臨床實踐中的用途,有必要進行進一步的研究。此外,關於其成分的生物利用度和藥物遞送系統,建議開發現代製劑(例如,奈米粒子,脂質體和微球)並評估其功效。它也已被證明是對抗各種癌症的有效工具。此外,對其抗代謝綜合症的作用有一些研究。綜上所述,可以得出結論,在飲食方案中建議使用薑黃及其成分以對抗多種疾病。為了更好地理解和判斷其在臨床實踐中的用途,有必要進行進一步的研究。此外,關於其成分的生物利用度和藥物遞送系統,建議開發現代製劑(例如,奈米粒子,脂質體和微球)並評估其功效。它也已被證明是對抗各種癌症的有效工具。此外,對其抗代謝綜合症的作用有一些研究。綜上所述,可以得出結論,在飲食方案中建議使用薑黃及其成分以對抗多種疾病。為了更好地理解和判斷其在臨床實踐中的用途,有必要進行進一步的研究。此外,關於其成分的生物利用度和藥物遞送系統,建議開發現代製劑(例如,奈米粒子,脂質體和微球)並評估其功效。可以得出結論,在飲食方案中建議使用薑黃及其成分來對抗多種疾病。為了更好地理解和判斷其在臨床實踐中的用途,有必要進行進一步的研究。此外,關於其成分的生物利用度和藥物遞送系統,建議開發現代製劑(例如,奈米粒子,脂質體和微球)並評估其功效。可以得出結論,在飲食方案中建議使用薑黃及其成分來對抗多種疾病。為了更好地理解和判斷其在臨床實踐中的用途,有必要進行進一步的研究。此外,關於其成分的生物利用度和藥物遞送系統,建議開發現代製劑(例如,奈米粒子,脂質體和微球)並評估其功效。

ID:doi.org/10.1155/2020/7656919

發表時間:2020年5月11日

參考文獻

參考資料(可上下滑動檢視)

1. M. Hajimonfarednejad, M. Ostovar, M. J. Raee, M. H. Hashempur, J. G. Mayer, and M. Heydari, “Cinnamon: a systematic review of adverse events,” Clinical Nutrition, vol. 38, no. 2, pp. 594–602, 2019.View at: Publisher Site | Google Scholar

2. R. Zare, A. Nadjarzadeh, M. M. Zarshenas, M. Shams, and M. Heydari, “Efficacy of cinnamon in patients with type II diabetes mellitus: a randomized controlled clinical trial,” Clinical Nutrition, vol. 38, no. 2, pp. 549–556, 2019.View at: Publisher Site | Google Scholar

3. I. Siró, E. Kápolna, B. Kápolna, and A. Lugasi, “Functional food. Product development, marketing and consumer acceptance-A review,” Appetite, vol. 51, no. 3, pp. 456–467, 2008.View at: Publisher Site | Google Scholar

4. Z. Hajmohammadi, M. Heydari, M. Nimrouzi et al., “Rhus coriaria L. increases serum apolipoprotein-A1 and high-density lipoprotein cholesterol levels: a double-blind placebo-controlled randomized clinical trial,” Journal of Integrative Medicine, vol. 16, no. 1, pp. 45–50, 2018.View at: Publisher Site | Google Scholar

5. A. Shakeri, M. H. Hashempur, M. Mojibian, F. Aliasl, S. Bioos, and F. Nejatbakhsh, “A comparative study of ranitidine and quince (Cydonia oblonga mill) sauce on gastroesophageal reflux disease (GERD) in pregnancy: a randomised, open-label, active-controlled clinical trial,” Journal of Obstetrics and Gynaecology, vol. 38, no. 7, pp. 1–7, 2018.View at: Publisher Site | Google Scholar

6. M. H. Hashempur, F. Khademi, M. Rahmanifard, and M. M. Zarshenas, “An evidence-based study on medicinal plants for hemorrhoids in Medieval Persia,” Journal of Evidence-Based Complementary & Alternative Medicine, vol. 22, no. 4, pp. 969–981, 2017.View at: Publisher Site | Google Scholar

7. T. Tsuda, “Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives,” Food & Function, vol. 9, no. 2, pp. 705–714, 2018.View at: Publisher Site | Google Scholar

8. S. C. Gupta, B. Sung, J. H. Kim, S. Prasad, S. Li, and B. B. Aggarwal, “Multitargeting by turmeric, the golden spice: from kitchen to clinic,” Molecular Nutrition & Food Research, vol. 57, no. 9, pp. 1510–1528, 2013.View at: Publisher Site | Google Scholar

9. K. P. Nair, The Agronomy and Economy of Turmeric and Ginger: The Invaluable Medicinal Spice Crops, Newnes, London, UK, 2013.

10. F. Delgado-Vargas and O. Paredes-López, Natural Colorants for Food and Nutraceutical Uses, CRC Press, Boca Raton, FL, USA, 2002.

11. G. A. F. Hendry and J. Houghton, Natural Food Colorants, Springer Science & Business Media, Berlin, Germany, 1996.

12. R. F. Tayyem, D. D. Heath, W. K. Al-Delaimy, and C. L. Rock, “Curcumin content of turmeric and curry powders,” Nutrition and Cancer, vol. 55, no. 2, pp. 126–131, 2006.View at: Publisher Site | Google Scholar

13. C. R. Ireson, D. J. Jones, S. Orr et al., “Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine,” Cancer Epidemiology and Prevention Biomarkers, vol. 11, no. 1, pp. 105–111, 2002.View at: Google Scholar

14. T.-T. Phan, P. See, S.-T. Lee, and S.-Y. Chan, “Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing,” The Journal of Trauma: Injury, Infection, and Critical Care, vol. 51, no. 5, pp. 927–931, 2001.View at: Publisher Site | Google Scholar

15. A. J. Ruby, G. Kuttan, K. Dinesh Babu, K. N. Rajasekharan, and R. Kuttan, “Anti-tumour and antioxidant activity of natural curcuminoids,” Cancer Letters, vol. 94, no. 1, pp. 79–83, 1995.View at: Publisher Site | Google Scholar

16. B. B. Aggarwal, A. Kumar, and A. C. Bharti, “Anticancer potential of curcumin: preclinical and clinical studies,” Anticancer Research, vol. 23, no. 1/A, pp. 363–398, 2003.View at: Google Scholar

17. P. Gul and J. Bakht, “Antimicrobial activity of turmeric extract and its potential use in food industry,” Journal of Food Science and Technology, vol. 52, no. 4, pp. 2272–2279, 2015.View at: Publisher Site | Google Scholar

18. J. Miquel, A. Bernd, J. M. Sempere, J. Díaz-Alperi, and A. Ramírez, “The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review,” Archives of Gerontology and Geriatrics, vol. 34, no. 1, pp. 37–46, 2002.View at: Publisher Site | Google Scholar

19. N. M. K. Selvi, M. Sridhar, R. Swaminathan, and R. Sripradha, “Efficacy of turmeric as adjuvant therapy in type 2 diabetic patients,” Indian Journal of Clinical Biochemistry, vol. 30, no. 2, pp. 180–186, 2015.View at: Google Scholar

20. R. Srimal, “Turmeric: a brief review of medicinal properties,” Fitoterapia, vol. 68, pp. 483–493, 1997.View at: Google Scholar

21. D. Mehrabani, M. Farjam, B. Geramizadeh, N. Tanideh, M. Amini, and M. R. Panjehshahin, “The healing effect of curcumin on burn wounds in rat,” World Journal of Plastic Surgery, vol. 4, no. 4, pp. 29–35, 2015.View at: Google Scholar

22. P. S. Babu and K. Srinivasan, “Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats,” Molecular and Cellular Biochemistry, vol. 166, no. 1-2, pp. 169–175, 1997.View at: Publisher Site | Google Scholar

23. A. Duvoix, R. Blasius, S. Delhalle et al., “Chemopreventive and therapeutic effects of curcumin,” Cancer Letters, vol. 223, no. 2, pp. 181–190, 2005.View at: Publisher Site | Google Scholar

24. G. Garcea, D. P. Berry, D. J. Jones et al., “Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences,” Cancer Epidemiology and Prevention Biomarkers, vol. 14, no. 1, pp. 120–125, 2005.View at: Google Scholar

25. P. R. Holt, S. Katz, and R. Kirshoff, “Curcumin therapy in inflammatory bowel disease: a pilot study,” Digestive Diseases and Sciences, vol. 50, no. 11, pp. 2191–2193, 2005.View at: Publisher Site | Google Scholar

26. M. Iqbal, S. D. Sharma, Y. Okazaki, M. Fujisawa, and S. Okada, “Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity,” Pharmacology and Toxicology, vol. 92, no. 1, pp. 33–38, 2003.View at: Publisher Site | Google Scholar

27. R. A. Sharma, A. J. Gescher, and W. P. Steward, “Curcumin: the story so far,” European Journal of Cancer, vol. 41, no. 13, pp. 1955–1968, 2005.View at: Publisher Site | Google Scholar

28. G. K. Jayaprakasha, B. S. Jena, P. S. Negi, and K. K. Sakariah, “Evaluation of antioxidant activities and antimutagenicity of turmeric oil: a byproduct from curcumin production,” Zeitschrift für Naturforschung C, vol. 57, no. 9-10, pp. 828–835, 2002.View at: Publisher Site | Google Scholar

29. A. Y. Leung, Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics, Wiley, Hoboken, NJ, USA, 1980.

30. K. U. Pradeep, P. Geervani, and B. O. Eggum, “Common Indian spices: nutrient composition, consumption and contribution to dietary value,” Plant Foods for Human Nutrition, vol. 44, no. 2, pp. 137–148, 1993.View at: Publisher Site | Google Scholar

31. S. Li, W. Yuan, G. Deng, P. Wang, P. Yang, and B. B. Aggarwal, “Chemical composition and product quality control of turmeric (Curcuma longa L.),” Pharmaceutical Crops, vol. 2, no. 1, 2011.View at: Google Scholar

32. S. Singh, “From exotic spice to modern drug?” Cell, vol. 130, no. 5, pp. 765–768, 2007.View at: Publisher Site | Google Scholar

33. M. Farjam, D. Mehrabani, F. Abbassnia et al., “The healing effect of Curcuma longa on liver in experimental acute hepatic encephalopathy of rat,” Comparative Clinical Pathology, vol. 23, no. 6, pp. 1669–1673, 2014.View at: Publisher Site | Google Scholar

34. Y. Zhu and S. Bu, “Curcumin induces autophagy, apoptosis, and cell cycle arrest in human pancreatic cancer cells,” Evidence-Based Complementary and Alternative Medicine, vol. 2017, 2017.View at: Publisher Site | Google Scholar

35. X. Song, M. Zhang, E. Dai, and Y. Luo, “Molecular targets of curcumin in breast cancer,” Molecular Medicine Reports, vol. 19, no. 1, pp. 23–29, 2019.View at: Google Scholar

36. P. D. Kasi, R. Tamilselvam, K. Skalicka-Woźniak et al., “Molecular targets of curcumin for cancer therapy: an updated review,” Tumor Biology, vol. 37, no. 10, pp. 13017–13028, 2016.View at: Publisher Site | Google Scholar

37. H. Mirzaei, A. Masoudifar, A. Sahebkar et al., “MicroRNA: a novel target of curcumin in cancer therapy,” Journal of Cellular Physiology, vol. 233, no. 4, pp. 3004–3015, 2018.View at: Publisher Site | Google Scholar

38. S. S. Soflaei, A. A. Momtazi-Borojeni, M. Majeed, G. Derosa, P. Maffioli, and A. Sahebkar, “Curcumin: a natural pan-HDAC inhibitor in cancer,” Current Pharmaceutical Design, vol. 24, no. 2, pp. 123–129, 2018.View at: Publisher Site | Google Scholar

39. M. J. Gunter and M. F. Leitzmann, “Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes,” The Journal of Nutritional Biochemistry, vol. 17, no. 3, pp. 145–156, 2006.View at: Publisher Site | Google Scholar

40. X.-F. Huang and J.-Z. Chen, “Obesity, the PI3K/Akt signal pathway and colon cancer,” Obesity Reviews, vol. 10, no. 6, pp. 610–616, 2009.View at: Publisher Site | Google Scholar

41. P. Szlosarek, K. A. Charles, and F. R. Balkwill, “Tumour necrosis factor-α as a tumour promoter,” European Journal of Cancer, vol. 42, no. 6, pp. 745–750, 2006.View at: Publisher Site | Google Scholar

42. S. Chuengsamarn, S. Rattanamongkolgul, R. Luechapudiporn, C. Phisalaphong, and S. Jirawatnotai, “Curcumin extract for prevention of type 2 diabetes,” Diabetes Care, vol. 35, no. 11, pp. 2121–2127, 2012.View at: Publisher Site | Google Scholar

43. M.-J. Chen, Y.-M. Cheng, P.-H. Lai, J.-F. Wu, and Y.-C. Hsu, “In vitro biocompatibility of thermally gelling liquid mucoadhesive loaded curcuminoids in colorectal cancer chemoprevention,” International Journal of Colorectal Disease, vol. 27, no. 7, pp. 869–878, 2012.View at: Publisher Site | Google Scholar

44. K. Troselj and R. Kujundzic, “Curcumin in combined cancer therapy,” Current Pharmaceutical Design, vol. 20, no. 42, pp. 6682–6696, 2014.View at: Publisher Site | Google Scholar

45. L. Jiménez-Flores, S. López-Briones, M. Macías-Cervantes, J. Ramírez-Emiliano, and V. Pérez-Vázquez, “A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver,” Molecules, vol. 19, no. 6, pp. 8289–8302, 2014.View at: Publisher Site | Google Scholar

46. J. H. Kim, S. C. Gupta, B. Park, V. R. Yadav, and B. B. Aggarwal, “Turmeric (Curcuma longa) inhibits inflammatory nuclear factor (NF)-κB and NF-κB-regulated gene products and induces death receptors leading to suppressed proliferation, induced chemosensitization, and suppressed osteoclastogenesis,” Molecular Nutrition & Food Research, vol. 56, no. 3, pp. 454–465, 2012.View at: Publisher Site | Google Scholar

47. G. Lee, J.-Y. Joung, J.-H. Cho, C.-G. Son, and N. Lee, “Overcoming P-Glycoprotein-Mediated multidrug resistance in colorectal cancer: potential reversal agents among herbal medicines,” Evidence-Based Complementary and Alternative Medicine, vol. 2018, Article ID 3412074, 9 pages, 2018.View at: Publisher Site | Google Scholar

48. S. Kössler, C. Nofziger, M. Jakab, S. Dossena, and M. Paulmichl, “Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells,” Toxicology, vol. 292, no. 2-3, pp. 123–135, 2012.View at: Publisher Site | Google Scholar

49. J. Yu, X. Zhou, X. He, M. Dai, and Q. Zhang, “Curcumin induces apoptosis involving bax/bcl-2 in human hepatoma SMMC-7721 cells,” Asian Pac J Cancer Prev, vol. 12, no. 8, pp. 1925–1929, 2011.View at: Google Scholar

50. S. J. Lee and S. A. Langhans, “Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis,” BMC Cancer, vol. 12, no. 1, p. 44, 2012.View at: Publisher Site | Google Scholar

51. D. Ma, P. Tremblay, K. Mahngar, J. Collins, T. Hudlicky, and S. Pandey, “Selective cytotoxicity against human osteosarcoma cells by a novel synthetic C-1 analogue of 7-deoxypancratistatin is potentiated by curcumin,” PLoS One, vol. 6, no. 12, Article ID e28780, 2011.View at: Publisher Site | Google Scholar

52. K. L. Nair, A. K. T. Thulasidasan, G. Deepa, R. J. Anto, and G. V. Kumar, “Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier,” International Journal of Pharmaceutics, vol. 425, no. 1-2, pp. 44–52, 2012.View at: Publisher Site | Google Scholar

53. H. Yin, R. Guo, Y. Xu et al., “Synergistic antitumor efficiency of docetaxel and curcumin against lung cancer,” Acta Biochimica et Biophysica Sinica, vol. 44, no. 2, pp. 147–153, 2011.View at: Publisher Site | Google Scholar

54. Q. Qiao, Y. Jiang, and G. Li, “Curcumin improves the antitumor effect of X-ray irradiation by blocking the NF-κB pathway,” Anti-cancer Drugs, vol. 23, no. 6, pp. 597–605, 2012.View at: Publisher Site | Google Scholar

55. C. L. Kuo, S. Y. Wu, S. W Ip et al., “Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses,” International Journal of Oncology, vol. 39, no. 39, pp. 319–328, 2011.View at: Publisher Site | Google Scholar

56. A.-J. Jiang, G. Jiang, L.-T. Li, and J.-N. Zheng, “Curcumin induces apoptosis through mitochondrial pathway and caspases activation in human melanoma cells,” Molecular Biology Reports, vol. 42, no. 1, pp. 267–275, 2015.View at: Publisher Site | Google Scholar

57. S. A. Shah, S. Prasad, and K. E. Knudsen, “Targeting pioneering factor and hormone receptor cooperative pathways to suppress tumor progression,” Cancer Research, vol. 72, no. 5, pp. 1248–1259, 2012.View at: Publisher Site | Google Scholar

58. H. Wang, Q.-R. Geng, L. Wang, and Y. Lu, “Curcumin potentiates antitumor activity ofl-asparaginase via inhibition of the AKT signaling pathway in acute lymphoblastic leukemia,” Leukemia & Lymphoma, vol. 53, no. 7, pp. 1376–1382, 2012.View at: Publisher Site | Google Scholar

59. T. F. Wong, T. Takeda, B. Li et al., “Curcumin disrupts uterine leiomyosarcoma cells through AKT-mTOR pathway inhibition,” Gynecologic Oncology, vol. 122, no. 1, pp. 141–148, 2011.View at: Publisher Site | Google Scholar

60. F. Han, B. Luo, R. Shi et al., “Curcumin ameliorates rat experimental autoimmune neuritis,” Journal of Neuroscience Research, vol. 92, no. 6, pp. 743–750, 2014.View at: Publisher Site | Google Scholar

61. F. Luo, X. Song, Y. Zhang, and Y. Chu, “Low-dose curcumin leads to the inhibition of tumor growth via enhancing CTL-mediated antitumor immunity,” International Immunopharmacology, vol. 11, no. 9, pp. 1234–1240, 2011.View at: Publisher Site | Google Scholar

62. G. G. Yue, B. C. Chan, P.-M. Hon et al., “Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa,” Food and Chemical Toxicology, vol. 48, no. 8-9, pp. 2011–2020, 2010.View at: Publisher Site | Google Scholar

63. L. Mazzarino, L. F. C. Silva, J. C. Curta et al., “Curcumin-loaded lipid and polymeric nanocapsules stabilized by nonionic surfactants: an in vitro and in vivo antitumor activity on B16-F10 melanoma and macrophage uptake comparative study,” Journal of Biomedical Nanotechnology, vol. 7, no. 3, pp. 406–414, 2011.View at: Publisher Site | Google Scholar

64. E. Chinedum, E. Kate, C. Sonia, A. Ironkwe, and I. Andrew, “Polyphenolic composition and antioxidant activities of 6 new turmeric (Curcuma longa L.) accessions,” Recent Patents on Food, Nutrition & Agriculture, vol. 7, no. 1, pp. 22–27, 2015.View at: Publisher Site | Google Scholar

65. A. A. Canales-Aguirre, U. A. Gomez-Pinedo, S. Luquin, M. A. Ramírez-Herrera, M. L. Mendoza-Magaña, and A. Feria-Velasco, “Curcumin protects against the oxidative damage induced by the pesticide parathion in the hippocampus of the rat brain,” Nutritional Neuroscience, vol. 15, no. 2, pp. 62–69, 2012.View at: Publisher Site | Google Scholar

66. L. Menghini, S. Genovese, F. Epifano, B. Tirillini, C. Ferrante, and L. Leporini, “Antiproliferative, protective and antioxidant effects of artichoke, dandelion, turmeric and rosemary extracts and their formulation,” International Journal of Immunopathology and Pharmacology, vol. 23, no. 2, pp. 601–610, 2010.View at: Publisher Site | Google Scholar

67. V. H.-C. Liao, C.-W. Yu, Y.-J. Chu, W.-H. Li, Y.-C. Hsieh, and T.-T. Wang, “Curcumin-mediated lifespan extension in Caenorhabditis elegans,” Mechanisms of Ageing and Development, vol. 132, no. 10, pp. 480–487, 2011.View at: Publisher Site | Google Scholar

68. S. Daniel, J. L. Limson, A. Dairam, G. M. Watkins, and S. Daya, “Through metal binding, curcumin protects against lead- and cadmium-induced lipid peroxidation in rat brain homogenates and against lead-induced tissue damage in rat brain,” Journal of Inorganic Biochemistry, vol. 98, no. 2, pp. 266–275, 2004.View at: Publisher Site | Google Scholar

69. S. Wei, H. Xu, D. Xia, and R. Zhao, “Curcumin attenuates the effects of transport stress on serum cortisol concentration, hippocampal NO production, and BDNF expression in the pig,” Domestic Animal Endocrinology, vol. 39, no. 4, pp. 231–239, 2010.View at: Publisher Site | Google Scholar

70. Y. Zhang and Y. Zeng, “Curcumin reduces inflammation in knee osteoarthritis rats through blocking TLR4/MyD88/NF-κB signal pathway,” Drug Development Research, vol. 80, no. 3, pp. 353–359, 2019.View at: Publisher Site | Google Scholar

71. S. Suresh, P. Sankar, A. G. Telang, M. Kesavan, and S. N. Sarkar, “Nanocurcumin ameliorates Staphylococcus aureus-induced mastitis in mouse by suppressing NF‑κB signaling and inflammation,” International Immunopharmacology, vol. 65, pp. 408–412, 2018.View at: Publisher Site | Google Scholar

72. C. Li, X. Miao, F. Li et al., “Curcuminoids: implication for inflammation and oxidative stress in cardiovascular diseases,” Phytotherapy Research, vol. 33, no. 5, pp. 1302–1317, 2019.View at: Publisher Site | Google Scholar

73. H. Yin, Q. Guo, X. Li et al., “Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome,” The Journal of Immunology, vol. 200, no. 8, pp. 2835–2846, 2018.View at: Publisher Site | Google Scholar

74. R. Tabrizi, S. Vakili, M. Akbari et al., “The effects of curcumin-containing supplements on biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials,” Phytotherapy Research, vol. 33, no. 2, pp. 253–262, 2019.View at: Publisher Site | Google Scholar

75. A. Sadeghi, A. Rostamirad, S. Seyyedebrahimi, and R. Meshkani, “Curcumin ameliorates palmitate-induced inflammation in skeletal muscle cells by regulating JNK/NF-kB pathway and ROS production,” Inflammopharmacology, vol. 26, no. 5, pp. 1265–1272, 2018.View at: Publisher Site | Google Scholar

76. C. Kliem, A. Merling, M. Giaisi, R. Köhler, P. H. Krammer, and M. Li-Weber, “Curcumin suppresses T cell activation by blocking Ca 2+ mobilization and nuclear factor of activated T cells (NFAT) activation,” Journal of Biological Chemistry, vol. 287, no. 13, pp. 10200–10209, 2012.View at: Publisher Site | Google Scholar

77. D. Fernández-Lázaro, J. Mielgo-Ayuso, J. Seco Calvo, A. Córdova Martínez, A. Caballero García, and C. I. Fernandez-Lazaro, “Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: a systematic review,” Nutrients, vol. 12, no. 2, p. 501, 2020.View at: Publisher Site | Google Scholar

78. P. Governa, M. Marchi, V. Cocetta et al., “Effects of Boswellia Serrata Roxb. and Curcuma longa L. in an in vitro intestinal inflammation model using immune cells and Caco-2,” Pharmaceuticals, vol. 11, no. 4, p. 126, 2018.View at: Publisher Site | Google Scholar

79. S. Saraf‐Bank, A. Ahmadi, Z. Paknahad, M. Maracy, and M. Nourian, “Effects of curcumin supplementation on markers of inflammation and oxidative stress among healthy overweight and obese girl adolescents: a randomized placebo‐controlled clinical trial,” Phytotherapy Research, vol. 33, no. 8, pp. 2015–2022, 2019.View at: Google Scholar

80. F. Samadian, N. Dalili, F. Poor -reza Gholi et al., “Evaluation of Curcumin's effect on inflammation in hemodialysis patients,” Clinical Nutrition ESPEN, vol. 22, pp. 19–23, 2017.View at: Publisher Site | Google Scholar

81. W. G. Yu, G. Xu, G. J Ren et al., “Preventive action of curcumin in experimental acute pancreatitis in mouse,” The Indian Journal of Medical Research, vol. 134, no. 134, pp. 717–24, 2011.View at: Publisher Site | Google Scholar

82. Z.-J. Liu, H.-Q. Liu, C. Xiao et al., “Curcumin protects neurons against oxygen-glucose deprivation/reoxygenation-induced injury through activation of peroxisome proliferator-activated receptor-γ function,” Journal of Neuroscience Research, vol. 92, no. 11, pp. 1549–1559, 2014.View at: Publisher Site | Google Scholar

83. D. R. Ormond, H. Peng, R. Zeman, K. Das, R. Murali, and M. Jhanwar-Uniyal, “Recovery from spinal cord injury using naturally occurring antiinflammatory compound curcumin,” Journal of Neurosurgery: Spine, vol. 16, no. 5, pp. 497–503, 2012.View at: Publisher Site | Google Scholar

84. K. Sindhu, R. Indra, A. Rajaram, K. J. Sreeram, and R. Rajaram, “Investigations on the interaction of gold-curcumin nanoparticles with human peripheral blood lymphocytes,” Journal of Biomedical Nanotechnology, vol. 7, no. 1, p. 56, 2011.View at: Publisher Site | Google Scholar

85. R. K. Basniwal, H. S. Buttar, V. Jain, and N. Jain, “Curcumin nanoparticles: preparation, characterization, and antimicrobial study,” Journal of Agricultural and Food Chemistry, vol. 59, no. 5, pp. 2056–2061, 2011.View at: Google Scholar

86. J. W. Betts and D. W. Wareham, “In vitro activity of curcumin in combination with epigallocatechin gallate (EGCG) versus multidrug-resistant Acinetobacter baumannii,” BMC Microbiology, vol. 14, no. 1, p. 172, 2014.View at: Publisher Site | Google Scholar

87. N. M. El-Sayed, K. A. Ismail, S. A.-E.-G. Ahmed, and M. H. Hetta, “In vitro amoebicidal activity of ethanol extracts of Arachis hypogaea L., Curcuma longa L. and Pancratium maritimum L. on Acanthamoeba castellanii cysts,” Parasitology Research, vol. 110, no. 5, pp. 1985–1992, 2012.View at: Publisher Site | Google Scholar

88. P. Waghmare, A. Chaudhari, V. Karhadkar, and A. Jamkhande, “Comparative evaluation of turmeric and chlorhexidinegluconate mouthwash in prevention of plaque formationand gingivitis: a clinical and microbiological study,” The Journal of Contemporary Dental Practice, vol. 12, no. 4, pp. 221–224, 2011.View at: Google Scholar

89. C. D. Kaur and S. Saraf, “Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin,” Journal of Cosmetic Dermatology, vol. 10, no. 4, pp. 260–265, 2011.View at: Publisher Site | Google Scholar

90. R. E. Khalafalla, U. Müller, M. Shahiduzzaman et al., “Effects of curcumin (diferuloylmethane) on Eimeria tenella sporozoites in vitro,” Parasitology Research, vol. 108, no. 4, pp. 879–886, 2011.View at: Publisher Site | Google Scholar

91. H. S. Na, M. H. Cha, D.-R. Oh, C.-W. Cho, J. H. Rhee, and Y. R. Kim, “Protective mechanism of curcumin againstVibrio vulnificusinfection,” FEMS Immunology & Medical Microbiology, vol. 63, no. 3, pp. 355–362, 2011.View at: Publisher Site | Google Scholar

92. S. Zorofchian Moghadamtousi, H. Abdul Kadir, P. Hassandarvish, H. Tajik, S. Abubakar, and K. Zandi, “A review on antibacterial, antiviral, and antifungal activity of curcumin,” BioMed Research International, vol. 2014, 2014.View at: Publisher Site | Google Scholar

93. E. De Clercq, “Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection,” Medicinal Research Reviews, vol. 20, no. 5, pp. 323–349, 2000.View at: Publisher Site | Google Scholar

94. S. Prasad and A. K. Tyagi, “Curcumin and its analogues: a potential natural compound against HIV infection and AIDS,” Food & Function, vol. 6, no. 11, pp. 3412–3419, 2015.View at: Publisher Site | Google Scholar

95. H. Li, C. Zhong, Q. Wang, W. Chen, and Y. Yuan, “Curcumin is an APE1 redox inhibitor and exhibits an antiviral activity against KSHV replication and pathogenesis,” Antiviral Research, vol. 167, pp. 98–103, 2019.View at: Publisher Site | Google Scholar

96. S. M. Richart, Y.-L. Li, Y. Mizushina et al., “Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection,” Journal of Food and Drug Analysis, vol. 26, no. 3, pp. 1015–1023, 2018.View at: Publisher Site | Google Scholar

97. J. Dai, L. Gu, Y. Su et al., “Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways,” International Immunopharmacology, vol. 54, pp. 177–187, 2018.View at: Publisher Site | Google Scholar

98. S. Han, J. Xu, X. Guo, and M. Huang, “Curcumin ameliorates severe influenza pneumonia via attenuating lung injury and regulating macrophage cytokines production,” Clinical and Experimental Pharmacology and Physiology, vol. 45, no. 1, pp. 84–93, 2018.View at: Publisher Site | Google Scholar

99. S. Heidari, S. Mahdiani, M. Hashemi, and F. Kalalinia, “Recent advances in neurogenic and neuroprotective effects of curcumin through the induction of neural stem cells,” Biotechnology and Applied Biochemistry, 2020.View at: Publisher Site | Google Scholar

100. R. Kannappan, S. C. Gupta, J. H. Kim, S. Reuter, and B. B. Aggarwal, “Neuroprotection by spice-derived nutraceuticals: you are what you eat!,” Molecular Neurobiology, vol. 44, no. 2, pp. 142–159, 2011.View at: Publisher Site | Google Scholar

101. R. B. Mythri and M. M. Srinivas Bharath, “Curcumin: a potential neuroprotective agent in Parkinson’s disease,” Current Pharmaceutical Design, vol. 18, no. 1, pp. 91–99, 2012.View at: Publisher Site | Google Scholar

102. B. Ahmad and L. J. Lapidus, “Curcumin prevents aggregation in α-synuclein by increasing reconfiguration rate,” Journal of Biological Chemistry, vol. 287, no. 12, pp. 9193–9199, 2012.View at: Publisher Site | Google Scholar

103. H.-F. Ji and L. Shen, “The multiple pharmaceutical potential of curcumin in Parkinson’s disease,” CNS & Neurological Disorders—Drug Targets, vol. 13, no. 2, pp. 369–373, 2014.View at: Publisher Site | Google Scholar

104. R. B. Mythri, J. Veena, G. Harish, B. S. Shankaranarayana Rao, and M. M. Srinivas Bharath, “Chronic dietary supplementation with turmeric protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-mediated neurotoxicity in vivo: implications for Parkinson's disease,” British Journal of Nutrition, vol. 106, no. 1, pp. 63–72, 2011.View at: Publisher Site | Google Scholar

105. G. Harish, C. Venkateshappa, R. B. Mythri et al., “Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: implications for Parkinson's disease,” Bioorganic & Medicinal Chemistry, vol. 18, no. 7, pp. 2631–2638, 2010.View at: Publisher Site | Google Scholar

106. R. Wang, Y.-H. Li, Y. Xu et al., “Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 34, no. 1, pp. 147–153, 2010.View at: Publisher Site | Google Scholar

107. V. Calabrese, D. A. Butterfield, and A. M. Stella, “Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer's disease,” The Italian Journal of Biochemistry, vol. 52, no. 52, pp. 177–181, 2003.View at: Google Scholar

108. M. Divino da Rocha, F. Pereira Dias Viegas, H. Cristina Campos et al., “The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: alzheimers disease,” CNS & Neurological Disorders - Drug Targets, vol. 10, no. 2, pp. 251–270, 2011.View at: Publisher Site | Google Scholar

109. D. Yanagisawa, N. F. Ibrahim, H. Taguchi et al., “Curcumin derivative with the substitution at C-4 position, but not curcumin, is effective against amyloid pathology in APP/PS1 mice,” Neurobiology of Aging, vol. 36, no. 1, pp. 201–210, 2015.View at: Publisher Site | Google Scholar

110. S. Doggui, J. K. Sahni, M. Arseneault, L. Dao, and C. Ramassamy, “Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line,” Journal of Alzheimer's Disease, vol. 30, no. 2, pp. 377–392, 2012.View at: Publisher Site | Google Scholar

111. P. Dohare, S. Varma, and M. Ray, “Curcuma oil modulates the nitric oxide system response to cerebral ischemia/reperfusion injury,” Nitric Oxide, vol. 19, no. 1, pp. 1–11, 2008.View at: Publisher Site | Google Scholar

112. Z.-J. Zhang, L.-X. Zhao, D.-L. Cao, X. Zhang, Y.-J. Gao, and C. Xia, “Curcumin inhibits LPS-induced CCL2 expression via JNK pathway in C6 rat astrocytoma cells,” Cellular and Molecular Neurobiology, vol. 32, no. 6, pp. 1003–1010, 2012.View at: Publisher Site | Google Scholar

113. S. Kulkarni, K. K. Akula, and J. Deshpande, “Evaluation of antidepressant-like activity of novel water-soluble curcumin formulations and St. John’s wort in behavioral paradigms of despair,” Pharmacology, vol. 89, no. 1-2, pp. 83–90, 2012.View at: Publisher Site | Google Scholar

114. Z. Keshavarzi, F. Shakeri, G. E. Barreto, B. Bibak, T. Sathyapalan, and A. Sahebkar, “Medicinal plants in traumatic brain injury: neuroprotective mechanisms revisited,” BioFactors, vol. 45, no. 4, pp. 517–535, 2019.View at: Publisher Site | Google Scholar

115. W. Dong, B. Yang, L. Wang et al., “Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling,” Toxicology and Applied Pharmacology, vol. 346, pp. 28–36, 2018.View at: Publisher Site | Google Scholar

116. M. Akbari, K. B. Lankarani, R. Tabrizi et al., “The effects of curcumin on weight loss among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials,” Frontiers in Pharmacology, vol. 10, 2019.View at: Publisher Site | Google Scholar

117. M. Azhdari, M. Karandish, and A. Mansoori, “Metabolic benefits of curcumin supplementation in patients with metabolic syndrome: a systematic review and meta‐analysis of randomized controlled trials,” Phytotherapy Research, vol. 33, no. 5, pp. 1289–1301, 2019.View at: Publisher Site | Google Scholar

118. R. Tabrizi, S. Vakili, K. B. Lankarani et al., “The effects of curcumin on glycemic control and lipid profiles among patients with metabolic syndrome and related disorders: a systematic review and metaanalysis of randomized controlled trials,” Current Pharmaceutical Design, vol. 24, no. 27, pp. 3184–3199, 2018.View at: Publisher Site | Google Scholar

119. J.-N. Ho, J. Y. Jang, H.-G. Yoon et al., “Anti-obesity effect of a standardised ethanol extract from Curcuma longa L. fermented with Aspergillus oryzae in ob/ob mice and primary mouse adipocytes,” Journal of the Science of Food and Agriculture, vol. 92, no. 9, pp. 1833–1840, 2012.View at: Publisher Site | Google Scholar

120. G. Appendino, G. Belcaro, U. Cornelli et al., “Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study,” Panminerva Medica, vol. 53, no. 3 Suppl 1, pp. 43–49, 2011.View at: Google Scholar

121. T.-S. Kam, C.-Y. Wong, P.-L. Kwan et al., “Effects and mechanism of turmeric vasorelaxation of the thoracic aorta in hypercholesterolemic rats,” Journal of Medicinal Food, vol. 15, no. 2, pp. 190–199, 2012.View at: Publisher Site | Google Scholar

122. S. V. Nampoothiri, E. K. Praseetha, V. V. Venugopalan, and A. Nirmala Menon, “Process development for the enrichment of curcuminoids in turmeric spent oleoresin and its inhibitory potential against LDL oxidation and angiotensin-converting enzyme,” International Journal of Food Sciences and Nutrition, vol. 63, no. 6, pp. 696–702, 2012.View at: Publisher Site | Google Scholar

123. G. Kapakos, V. Youreva, and A. K. Srivastava, “Cardiovascular protection by curcumin: molecular aspects,” Indian Journal of Biochemistry & Biophysics, vol. 49, no. 5, pp. 306–315, 2012.View at: Google Scholar

124. A. M. Gorabi, S. Hajighasemi, N Kiaie et al., “Anti-fibrotic effects of curcumin and some of its analogues in the heart,” Heart Failure Reviews, 2019.View at: Publisher Site | Google Scholar

125. P. Y. Liu, “Curcumin: another potential translational candidate for anti-fibrosis on heart failure?” Acta Cardiologica Sinica, vol. 30, no. 5, pp. 483-484, 2014.View at: Google Scholar

126. H. Li, A. Sureda, H. P. Devkota et al., “Curcumin, the golden spice in treating cardiovascular diseases,” Biotechnology Advances, vol. 38, p. 107343, 2020.View at: Publisher Site | Google Scholar

127. S. Saraf-Bank, A. Ahmadi, Z. Paknahad, M. Maracy, and M. Nourian, “Effects of curcumin on cardiovascular risk factors in obese and overweight adolescent girls: a randomized clinical trial,” Sao Paulo Medical Journal, vol. 137, no. 5, pp. 414–422, 2019.View at: Publisher Site | Google Scholar

128. A. Saeidinia, F. Keihanian, A. E. Butler, R. K. Bagheri, S. L. Atkin, and A. Sahebkar, “Curcumin in heart failure: a choice for complementary therapy?” Pharmacological Research, vol. 131, pp. 112–119, 2018.View at: Publisher Site | Google Scholar

129. T. Farkhondeh and S. Samarghandian, “Antidotal effects of curcumin against agents-induced cardiovascular toxicity,” Cardiovascular & Hematological Disorders-Drug Targets, vol. 16, no. 1, pp. 30–37, 2016.View at: Publisher Site | Google Scholar

130. A. Hosseini and H. Hosseinzadeh, “Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: a review,” Biomedicine & Pharmacotherapy, vol. 99, pp. 411–421, 2018.View at: Publisher Site | Google Scholar

131. V. Soleimani, A. Sahebkar, and H. Hosseinzadeh, “Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: review,” Phytotherapy Research, vol. 32, no. 6, pp. 985–995, 2018.View at: Publisher Site | Google Scholar

132. R. Bahramsoltani, R. Rahimi, and M. H. Farzaei, “Pharmacokinetic interactions of curcuminoids with conventional drugs: a review,” Journal of Ethnopharmacology, vol. 209, pp. 1–12, 2017.View at: Publisher Site | Google Scholar

133. M. Sun, X. Su, B. Ding et al., “Advances in nanotechnology-based delivery systems for curcumin,” Nanomedicine, vol. 7, no. 7, pp. 1085–1100, 2012.View at: Publisher Site | Google Scholar

134. V. S. Gota, G. B. Maru, T. G. Soni, T. R. Gandhi, N. Kochar, and M. G. Agarwal, “Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers,” Journal of Agricultural and Food Chemistry, vol. 58, no. 4, pp. 2095–2099, 2010.View at: Publisher Site | Google Scholar

135. N. Ahmad, I. Ahmad, S. Umar, Z. Iqbal, M. Samim, and F. J. Ahmad, “PNIPAM nanoparticles for targeted and enhanced nose-to-brain delivery of curcuminoids: UPLC/ESI-Q-ToF-MS/MS-based pharmacokinetics and pharmacodynamic evaluation in cerebral ischemia model,” Drug Delivery, vol. 23, no. 7, pp. 2095–2114, 2016.View at: Google Scholar

136. P. A. Subramani, K. Panati, V. R. Lebaka, D. D. Reddy, and V. R. Narala, “Nanostructures for curcumin delivery: possibilities and challenges,” Nano‐ and Micro‐scale Drug Delivery Systems, Elsevier, Amsterdam, Netherlands, 2017.View at: Google Scholar

137. H. Ohori, H. Yamakoshi, M. Tomizawa et al., “Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer,” Molecular Cancer Therapeutics, vol. 5, no. 10, pp. 2563–2571, 2006.View at: Publisher Site | Google Scholar

138. T. H. Kim, H. H. Jiang, Y. S. Youn et al., “Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity,” International Journal of Pharmaceutics, vol. 403, no. 1-2, pp. 285–291, 2011.View at: Publisher Site | Google Scholar

139. Y. Gao, Z. Li, M. Sun et al., “Preparation and characterization of intravenously injectable curcumin nanosuspension,” Drug Delivery, vol. 18, no. 2, pp. 131–142, 2011.View at: Publisher Site | Google Scholar

最新評論
  • 孕期如何控制饑餓感
  • 怎樣用營養治療胃痛?