首頁>軍事>

中國的竹蜻蜓和義大利人達芬奇的直升機草圖,為現代直升機的發明提供了啟示,指出了正確的思維方向,它們被公認是直升機發展史的起點。

竹蜻蜓又叫飛螺旋和“中國陀螺”,這是我們祖先的奇特發明。有人認為,中國在公元前400年就有了竹蜻蜓,其實公元1,500年前的奇肱飛車就是一架無動力的放大了的竹蜻蜓。這種叫竹蜻蜓的民間玩具,一直流傳到現在。

現代直升機儘管比竹蜻蜓複雜千萬倍,但其飛行原理卻與竹蜻蜓有相似之處。現代直升機的旋翼就好像竹蜻蜓的葉片,旋翼軸就像竹蜻蜓的那根細竹棍兒,帶動旋翼的發動機就好像我們用力搓竹棍兒的雙手。竹蜻蜓的葉片前面圓鈍,後面尖銳,上表面比較圓拱,下表面比較平直。當氣流經過圓拱的上表面時,其流速快而壓力小;當氣流經過平直的下表面時,其流速慢而壓力大。於是上下表面之間形成了一個壓力差,便產生了向上的升力。當升力大於它本身的重量時,竹蜻蜓就會騰空而起。直升機旋翼產生升力的道理與竹蜻蜓是相同的。竹蜻蜓還有一個特性就是當它插在竹筒中被側風吹動旋轉時, 它也能上升。這個特性使得三千五百年前的奇肱人能憑藉自然風力進行一千公里航程的飛行 。

《大英百科全書》記載道:這種稱為“中國陀螺”的“直升機玩具”在15世紀中葉,也就是在達芬奇繪製帶螺絲旋翼的直升機設計圖之前,就已經傳入了歐洲。

《簡明不列顛百科全書》第9卷寫道:“直升機是人類最早的飛行設想之一,多年來人們一直相信最早提出這一想法的是達芬奇,但現在都知道,中國人比中世紀的歐洲人更早做出了直升機玩具。” 義大利人達芬奇在1483年提出了直升機的設想並繪製了草圖。

19世紀末,在義大利的米蘭圖書館發現了達芬奇在1475年畫的一張關於直升機的想象圖。這是一個用上漿亞麻布製成的巨大螺旋體,看上去好象一個巨大的螺絲釘。它以彈簧為動力旋轉,當達到一定轉速時,就會把機體帶到空中。駕駛員站在底盤上,拉動鋼絲繩,以改變飛行方向。西方人都說,這是最早的直升機設計藍圖。1907年8月,法國人保羅?科爾尼研製出一架全尺寸載人直升機,並在同年11月13日試飛成功。這架直升機被稱為“人類第一架直升機”。這架名為“飛行單車”的直升機不僅靠自身動力離開地面0.3米,完成了垂直升空,而且還連續飛行了20秒鐘,實現了自由飛行。

保羅?科爾尼研製的直升機帶兩副旋翼,主結構為一根V形鋼管,機身由V形鋼管和6個鋼管構成的星形件組成,並採用鋼索加強,以增加框架結構的剛度。V形框架中部安裝一臺24馬力的 Antainette 發動機和操作員座椅。機身總長6.20米,重260千克。V形框架兩端各裝一副直徑為6米的旋翼,每副旋翼有2片槳葉。

世界上第一種試飛成功的直升機

1938年,年輕的德國姑娘漢納賴奇駕駛一架雙旋翼直升機在柏林體育場進行了一次完美的飛行表演。這架直升機被直升機界認為是世界上第一種試飛成功的直升機。

1936年,德國福克公司在對早期直升機進行多方面改進之後,公開展示了自己製造的FW-61直升機,1年後該機創造了多項世界紀錄。這是一架機身類似固定翼飛機,但沒有固定機翼的大型雙旋翼橫列式直升機,它的兩副旋翼用兩組粗大的金屬架分別向右上方和左上方支起,兩副旋翼水平安裝在支架頂部。槳葉平面形狀是尖削的,用揮舞鉸和擺振鉸連線到槳轂上。用自動傾斜器使旋翼旋轉平面傾斜進行縱向操縱,通過兩副旋翼朝不同方向傾斜實現偏航操縱。旋翼槳葉總距是固定不變的,通過改變旋翼轉速來改變旋翼拉力。利用方向舵和水平尾翼來增加穩定性。FW61旋翼轂上裝有周期變距裝置,在旋翼旋轉過程中可改變槳葉槳距。還有一根可變動槳距的操縱桿來改變旋翼面的傾斜度,以實現飛行方向控制。

FW61就是靠這套週期變距裝置和操縱桿保證了它的機動飛行。該機旋翼直徑7米。動力裝置是一臺功率140馬力的活塞發動機。這是世界上第一架具有正常操縱性的直升機。該機時速100~120公里,航程200公里,起飛重量953千克。R-4是美國沃特-西科斯基公司20世紀40年代研製的一種2座輕型直升機,是世界上第1種投入批量生產的直升機,也是美國陸軍航空兵、海軍、海岸警衛隊和英國空軍、海軍使用的第一種軍用直升機。

該機的公司編號為VS-316,VS-316A。美國陸軍航空兵的編號為R-4,美國海軍和海岸警衛隊的編號為HNS-1,英國空軍將其命名為“食蚜虻”1(Hoverfly1),英國海軍將其命名為“牛虻”(Gadfly)。

早期的活塞式發動機和木質槳葉直升機

在20世紀40年代至50年代中期是實用型直升機發展的第一階段,這一時期的典型機種有:美國的S-51、S-55/H-19、貝爾47;蘇聯的米-4、卡-18;英國的布裡斯托爾-171;捷克的HC-2等。這一時期的直升機可稱為第一代直升機。

貝爾47是美國貝爾直升機公司研製的單發輕型直升機,研製工作開始於1941年,試驗機貝爾30於1943年開始飛行,1945年改名為貝爾47,1946年3月8日獲得美國民用航空署(CAA)的適航證,這是世界上第一架取得適航證的民用直升機。該機是單旋翼帶尾槳式佈局、兩葉槳葉的蹺蹺板式旋翼。旋翼下面有穩定杆,與槳葉呈直角。普通的自動傾斜器可進行總距和週期變距操縱。尾樑後部有兩個槳葉的全金屬尾槳。

卡-18是蘇聯卡莫夫設計局設計的單發雙旋翼共軸式輕型多用途直升機,於1957年年中首次飛行,此後不久投入批生產。採用兩副旋轉方向相反的3槳葉共軸式旋翼,槳葉為木質結構。裝1臺275馬力的九缸星形活塞式發動機。機身為鋼管焊接結構,具有輕金屬蒙皮和硬殼式尾樑。座艙內可容納1名駕駛員和3名旅客。採用四輪式起落架,前起落架機輪可以自由轉向。

這個階段的直升機具有以下特點:動力源採用活塞式發動機,這種發動機功率小,比功率低(約為1.3千瓦/千克),比容積低(約247.5千克/米3)。採用木質或鋼木混合結構的旋翼槳葉,壽命短,約為600飛行小時。槳葉翼型為對稱翼型,槳尖為矩形,氣動效率低,旋翼升阻比為6.8左右,旋翼效率通常為0.6。機體結構採用全金屬構架式,空重與總重之比較大,約為0.65。沒有必要的導航裝置,只有功能單一的目視飛行儀表,通訊裝置為電子管裝置。動力學效能不佳,最大飛行速度低(約為200千米/小時),振動水平在0.25g左右,噪聲水平約為110分貝,乘坐舒適性差。20世紀50年代中期至60年代末是實用型直升機發展的第二階段。這個階段的典型機種有:美國的S-61、貝爾209/AH-1、貝爾204/UH-1,蘇聯的米-6、米-8、米-24,法國的SA321“超黃蜂”等。這個時期開始出現專用武裝直升機,如AH-1和米-24。這些直升機稱為稱為第二代直升機。

這個階段的直升機具有以下特點:動力源開始採用第一代渦輪軸發動機。渦輪軸發動機產生的功率比活塞式發動機大得多,使直升機效能得到很大提高。第一代渦輪軸發動機的比功率約為3.62千瓦/千克,比容積為294.9千瓦/米3左右。直升機旋翼槳葉由木質和鋼木混合結構發展成全金屬槳葉,壽命達到1200飛行小時。槳葉翼型為非對稱的,槳尖簡單尖削與後掠,氣動效率有所提高,旋翼升阻比達到7.3,旋翼效率提高到0.6。機體結構為全金屬薄壁結構,空重與總重之比降低到0.5附近。已採用減振的吸能起落架和座椅。機體外形開始考慮流線化,以減小氣動阻力。直升機座艙開始採用縱列式佈置,使機身變窄。效能明顯改善,最大飛行速度達到200~250千米/小時,振動水平降低到0.15g左右,噪聲水平為100分貝,乘坐舒適性有所改善。20世紀70年代至80年代是直升機發展的第三階段,典型機種有:美國的S-70/UH-60“黑鷹”、S-76、AH-64“阿帕奇”,蘇聯的卡-50、米-28,法國的SA365“海豚”,義大利的A129“貓鼬”等。

在這一階段,出現了專門的民用直升機。為了深入研究直升機的氣動力學和其它問題,這時也設計製造了專用的直升機研究機(如S-72和貝爾533)。各國競相研製專用武裝直升機,促進了直升機技術的發展。

這個階段的直升機具有以下特點:渦輪軸發動機發展到第二代,改用了自由渦軸結構,因此具有較好的轉速控制特徵,改善了起動效能,但加速效能沒有定軸結構的好。發動機的重量和體積有所減小,壽命和可靠性均有提高。典型的發動機耗油率為0.36千克/千瓦小時,與活塞式發動機差不多。旋翼槳葉採用複合材料,其壽命比金屬槳葉有大幅度提高,達到3600小時左右。翼型不再借用固定翼飛機的翼型,而是為直升機專門研製的翼型,即二維曲線變化翼型。槳尖呈拋物線後掠。槳轂廣泛使用彈性軸承,有的成無鉸式。尾槳已開始採用效率高又安全的涵道尾槳。旋翼升阻比達8.5左右,旋翼效率提高到0.7左右。機體次結構也採用複合材料製造,複合材料佔機體總重的比例通常為10%左右,直升機的空重/總重比一般為0.5。對於軍用直升機,特別是武裝直升機來說,提出了抗彈擊和耐墜毀要求。美軍方提出了軍用直升機耐毀標準MIL-STD-1290,已成為軍用直升機的設計標準。為滿足這些標準,軍用直升機採用了乘員裝甲保護,專門設計了耐墜毀起落架、座椅和燃油系統。電子系統已發展到半整合型。直升機採用大規模積體電路通訊裝置、整合的自主導航裝置、整合儀表、電子式與機械式混合操縱機構等。機上的電子裝置之間靠一條雙向數字資料匯流排交連,通過這條匯流排可進行資訊發射和接收。直升機採用混合佈置的區域性整合駕駛艙。第一代夜視系統的使用使直升機具備了夜間飛行能力。這種較為先進的半整合電子裝置使直升機通訊距離顯著增大,導航距離與精度明顯提高,儀表數量有所減少,飛行員工作負荷得到減輕,也使直升機具備了機動/貼地飛行以及在不利氣象/夜間條件下的飛行能力,從而提高了直升機的整體效能。動力學效能明顯提高。直升機的升阻比達到5.4,全機振動水平約為0.1g,噪聲水平低於95分貝,最大飛行速度達到300千米/小時。20世紀90年代是直升機發展的第四階段,出現了目視、聲學、紅外及雷達綜合隱身設計的武裝偵察直升機。典型機種有:美國的RAH-66和S-92,國際合作的“虎”、NH90和EH101等,稱為第四代直升機。

這個階段的直升機具有以下特點:採用第3代渦軸發動機,這種發動機雖然仍採用自由渦軸結構,但採用了先進的發動機全權數字控制系統及自動監控系統,並與機載計算機管理系統整合在一起,有了顯著的技術進步和綜合特性。第3代渦軸發動機的耗油率僅為0.28千克/千瓦小時,低於活塞式發動機的耗油率。其代表性的發動機有T800、RTM322和RTM390。槳葉採用碳纖維、凱芙拉等高階複合材料製成,槳葉壽命達到無限。新型槳尖形狀繁多,較突出的有拋物線後掠形和先前掠再後掠的BERP槳尖。這些新槳尖的共同特點是可以減弱槳尖的壓縮性效應,改善槳葉的氣動載荷分佈,降低旋翼的振動和噪聲,提高旋翼的氣動效率。球柔性和無軸承槳轂獲得了廣泛應用,槳轂殼體及槳葉的連線件採用複合材料,使結構更為緊湊,重量大為降低,阻力大大減小。旋翼升阻比達到10.5,旋翼效率為0.8。這個階段應用了無尾槳反扭矩系統,其優點是具有良好的操縱響應特性、振動小、噪聲低,不需要尾傳動軸和尾減速,使零部件數量大大減小,因而提高了可維護性。複合材料在直升機上獲得了前所未有的廣泛應用。直升機開始採用複合材料主結構,複合材料的應用比例大幅度上升,通常佔機體結構重量30~50%。

這一時期的民用型直升機的空重/總重比約為0.37。高度整合化的電子裝置。計算機技術、資訊科技及智慧技術在直升機上獲得應用,直升機電子裝置朝著高度整合化方向發展。這一時期的直升機,採用了先進的增穩增控裝置,用電傳、光傳操縱取代了常規的操縱系統,採用先進的捷聯慣導、衛星導航裝置及組合導航技術,先進的通訊、識別及資訊傳輸裝置,先進的目標識別、瞄準、武器發射等火控裝置及先進的電子對抗裝置,採用了匯流排資訊傳輸與資料融合技術,並正向感測器融合方向發展。機上的電子、火控及飛行控制系統等通過多餘度數字資料匯流排交連,實現了資訊共享。採用了多功能整合顯示技術,用少量多功能顯示器代替大量的單個儀表,通過鍵盤控制顯示直升機的飛行資訊,利用中央計算機對通訊、導航、飛行控制、敵我識別、電子對抗、系統監視、武器火控的資訊進行整合處理從而進行整合控制。採用這類先進的整合電子裝置,大大簡化了直升機座艙佈局和儀表板佈置,系統部件得到簡化,重量大大減輕。更主要的是極大地減輕了飛行員工作負擔,改善了直升機的飛機品質和使用效能。直升機的全機升阻比達到6.6,振動水平降到0.05g,噪聲水平小於90分貝,最大速度可達到350千米/小時。

(qinghangwang)

(旋翼機、固定翼、直升機相關圖紙、資料)

文章源 | 網路

最新評論
  • 東風家族日益強大,美國亞太老巢不安穩,五角大樓急尋新防禦手段
  • 世界上口徑最大的炮有多大?僅炮彈就有1.7噸!