1、Cell:線蟲中全腦神經元鑑定的多色圖譜
2020年12月29日,來自美國哥倫比亞大學Eviatar Yemini等研究人員在期刊《細胞》上發表了題為“NeuroPAL: A Multicolor Atlas for Whole-Brain Neuronal Identification in C. elegans.”的研究論文,繪製出線蟲中全腦神經元鑑定的多色圖譜。
研究人員透過設計一種稱為NeuroPAL(神經元多色圖譜)的多色轉基因技術,並在秀麗隱杆線蟲中實現了這一目標。NeuroPAL線蟲在整個雌雄同體的神經系統中共享一個固定的多色熒光圖譜,從而可解析所有的神經元身份。標記有NeuroPAL的神經元在綠色、青色或黃色發射通道中不發射熒光,從而使這個轉基因可與基因表達或神經元動力學的許多已報道分子一起使用。
研究人員利用NeuroPAL進行了神經系統範圍內神經元鑑定的三種應用。首先,研究人員確定了乙醯膽鹼、GABA和穀氨酸的所有代謝型受體的全腦表達模式,從而完成了該交流網路的圖譜。其次,研究人員發現了轉錄因子突變引起的細胞命運變化。第三,研究人員記錄了響應吸引和排斥化學感覺線索時的全腦活動,從而表徵這些刺激的多模式編碼。
Summary
Comprehensively resolving neuronal identities in whole-brain images is a major challenge. We achieve this in C. elegans by engineering a multicolor transgene called NeuroPAL (a neuronal polychromatic atlas of landmarks). NeuroPAL worms share a stereotypical multicolor fluorescence map for the entire hermaphrodite nervous system that resolves all neuronal identities. Neurons labeled with NeuroPAL do not exhibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used with numerous reporters of gene expression or neuronal dynamics. We showcase three applications that leverage NeuroPAL for nervous-system-wide neuronal identification. First, we determine the brainwide expression patterns of all metabotropic receptors for acetylcholine, GABA, and glutamate, completing a map of this communication network. Second, we uncover changes in cell fate caused by transcription factor mutations. Third, we record brainwide activity in response to attractive and repulsive chemosensory cues, characterizing multimodal coding for these stimuli.
Eviatar Yemini, Albert Lin et al, NeuroPAL: A Multicolor Atlas for Whole-Brain Neuronal Identification in C. elegans, DOI: 10.1016/j.cell.2020.12.012, Cell:最新IF:36.216
2、Nature Genetics:破譯影響人類”顏值”的遺傳因素
2020年12月7日,來自比利時魯汶大學Peter Claes等研究人員在《自然—遺傳學》雜誌上發表了題為“Insights into the genetic architecture of the human face.”的研究結果,發現破譯影響人類面部形成的遺傳因素。
研究人員表示,Achley和Hall在1991年概括了當代生物學的主要問題之一:在發育過程中如何出現複雜的形態結構以及在進化過程中如何改變形態。這個問題繼續困擾著生物學家、遺傳學家、人類學家和臨床醫生近三十年。人臉就是這樣一種典型的複雜形態結構,且高度多型,是遺傳、細胞和環境因素複雜協調的結果。透過先前的全基因組關聯研究(GWAS),已激發下100多個基因座參與正常範圍的面部形態塑造,但綜合表徵影響人臉的遺傳結構仍然具有挑戰性。
使用多變數全基因組關聯研究對8,246例歐洲個體進行薈萃分析,研究人員確定了203個與正常範圍面部變異相關的全基因組訊號(120個在研究範圍內也有意義)。後續分析表明,圍繞這些訊號的區域在顱神經crest細胞和顱面組織中的增強子活性得到了富集,數個區域藏有多種訊號,它們與不同的面部表型相關,並且有證據表明這些變異可能具有協同作用。總而言之,這些分析為了解個體和協調的遺傳行為如何塑造複雜的形態特徵提供了見識。
Summary
The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multivariate genome-wide association study meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated actions of variants. In summary, our analyses provide insights into the understanding of how complex morphological traits are shaped by both individual and coordinated genetic actions.
Julie D. White, Karlijne Indencleef, Insights into the genetic architecture of the human face. DOI: 10.1038/s41588-020-00741-7, Nature Genetics:最新IF:25.455
3、Science:揭示preTCR與其配體配對方式
2020年12月17日,來自美國達納-法伯癌症研究所Ellis L. Reinherz和Jia-huai Wang研究組合作在《科學》雜誌上發表了題為“Pre–T cell receptors topologically sample self-ligands during thymocyte β-selection.”的研究結果,發現在胸腺細胞β-選擇過程中,pre-T細胞受體(preTCRs)以拓撲結構方式取樣自身配體。
Fig 3| reTCRβ-pΜΗC-I複合物結構、配位
使用X射線晶體學,他們顯示了preTCR如何將其單個可變域(Vβ)的凹面β-摺疊表面“水平”地抓住凸出的MHCα2-螺旋。相比之下,αβTCR的目的是使其配對的VαVβ模組的所有六個互補決定區(CDR)環識別“垂直”頭對頭結合中與MHC分子(pMHCs)結合的肽。preTCR的拓撲擬合可確保CDR3β到達肽的特徵性C末端片段以進行pMHC取樣,從而建立隨後的αβTCR典型對接模型。
“水平”對接排除了種系CDR1β–和CDR2β–MHC的結合,從而在αβTCR介導的選擇最佳化之前拓寬了β鏈庫的多樣性。因此,一個亞基相繼調節相關多組分受體的識別邏輯。
據悉,自我歧視是在胸腺細胞發育過程中程式設計的一個關鍵但不確定的分子過程,它需要大量的preTCRs和αβTCR。
Summary
Self-discrimination, a critical but ill-defined molecular process programmed during thymocyte development, requires myriad pre-T cell receptors (preTCRs) and αβTCRs. Using X-ray crystallography, we show how a preTCR applies the concave β-sheet surface of its single variable domain (Vβ) to “horizontally” grab the protruding MHC α2-helix. By contrast, αβTCRs purpose all six complementary-determining region (CDR) loops of their paired VαVβ module to recognize peptides bound to MHC molecules (pMHCs) in “vertical” head-to-head binding. The preTCR topological fit ensures that CDR3β reaches the peptide’s featured C-terminal segment for pMHC sampling, establishing the subsequent αβTCR canonical docking mode. “Horizontal” docking precludes germline CDR1β– and CDR2β–MHC binding to broaden β-chain repertoire diversification before αβTCR-mediated selection refinement. Thus, one subunit successively attunes the recognition logic of related multicomponent receptors.
Xiaolong Li, Réka Mizsei et al, Pre–T cell receptors topologically sample self-ligands during thymocyte β-selection. DOI: 10.1126/science.abe0918, 最新IF:41.037
用最專業的精神,開放性的思維,與你一起探索行業走向,快速瞭解這個領域!