物質的非彈性散射使我們能夠探測到準粒子(QPs),如聲子(量子化的晶格振動)、磁子(量子化的自旋激發)和極子。這些準粒子具有有限的能量和壽命,攜帶著準粒子內和準粒子間相互作用及其耦合強度的資訊,對於理解材料對外場刺激的反應具有重要作用。導熱性、熱容量和相變等許多材料特性經常被直接使用各種準粒子來描述。光學、X射線、中子和電子散射方法(例如拉曼散射、非彈性X射線散射(IXS)、非彈性中子散射(INS)和電子能量損失光譜(EELS)等)已被常規用於測量這些準粒子。通常這些測量是在動量和能量空間(k-ω)中進行的,缺乏關於時間動態的資訊(即k-t和x-t成像),動量或實空間的時間演化範圍可從飛秒到幾個納秒。
為了對k-t和x-t動態進行成像,需要具有兩個超短脈衝的泵-探針裝置,其中探針脈衝的持續時間必須短於被探測的特徵時間尺度。得益於巨大的技術進步,產生超短的X射線和電子脈衝、並可對k-t和x-t空間的晶格動態進行成像的設想已經成為可能。由印度理工學院機械工程系的Dipanshu Bansal教授和物理系的Gopal Dixit教授共同領導的團隊,建立了一套非彈性散射方法,具有原子尺度時空解析度的晶格動力學成像功能。利用非彈性散射測量的優異能量和動量解析度,在重建晶格動力學過程中可以實現幾十飛秒的時間解析度和~1 Å的空間解析度。作者提出的理論方法允許直接成像的晶格動力學,並使我們能夠提取特定聲子模式的壽命。此外,透過選擇干擾源在實空間的空間範圍,可以靈活地決定是單個聲子模還是多個聲子模參與了動力學過程。模擬結果與測量到的鍺晶格動力學之間具有良好的一致性,為所提出的方法提供了信心和穩健性。作者認為,該方法將成為時間分辨衍射方法成像晶格動力學的替代方法,並有利於在時間分辨衍射難以探測時完成任務,如中子散射和原位測量條件下。
該文近期發表於npj Computational Materials 7: 7 (2021),英文標題與摘要如下,點選https://www.nature.com/articles/s41524-020-00475-4可以自由獲取論文PDF。
Four-dimensional imaging of lattice dynamics using ab-initio simulation
Navdeep Rana, Aditya Prasad Roy, Dipanshu Bansal & Gopal Dixit
Time-resolved mapping of lattice dynamics in real- and momentum-space is essential to better understand several ubiquitous phenomena such as heat transport, displacive phase transition, thermal conductivity, and many more. In this regard, time-resolved diffraction and microscopy methods are employed to image the induced lattice dynamics within a pump–probe configuration. In this work, we demonstrate that inelastic scattering methods, with the aid of theoretical simulation, are competent to provide similar information as one could obtain from the time-resolved diffraction and imaging measurements. To illustrate the robustness of the proposed method, our simulated result of lattice dynamics in germanium is in excellent agreement with the time-resolved x-ray diffuse scattering measurement performed using x-ray free-electron laser. For a given inelastic scattering data in energy and momentum space, the proposed method is useful to image in-situ lattice dynamics under different environmental conditions of temperature, pressure, and magnetic field. Moreover, the technique will profoundly impact where time-resolved diffraction within the pump–probe setup is not feasible, for instance, in inelastic neutron scattering.